6 research outputs found

    Hytrosaviridae: a proposal for classification and nomenclature of a new insect virus family

    No full text
    Salivary gland hypertrophy viruses (SGHVs) have been identified from different dipteran species, such as the tsetse fly Glossina pallidipes (GpSGHV), the housefly Musca domestica (MdSGHV) and the narcissus bulbfly Merodon equestris (MeSGHV). These viruses share the following characteristics: (i) they produce non-occluded, enveloped, rod-shaped virions that measure 500¿ 1,000 nm in length and 50¿100 nm in diameter; (ii) they possess a large circular double-stranded DNA (dsDNA) genome ranging in size from 120 to 190 kbp and having G + C ratios ranging from 28 to 44%; (iii) they cause overt salivary gland hypertrophy (SGH) symptoms in dipteran adults and partial to complete sterility. The available information on the complete genome sequence of GpSGHV and MdSGHV indicates significant co-linearity between the two viral genomes, whereas no co-linearity was observed with baculoviruses, ascoviruses, entomopoxviruses, iridoviruses and nudiviruses, other large invertebrate DNA viruses. The DNA polymerases encoded by the SGHVs are of the type B and closely related, but they are phylogenetically distant from DNA polymerases encoded by other large dsDNA viruses. The great majority of SGHV ORFs could not be assigned by sequence comparison. Phylogenetic analysis of conserved genes clustered both SGHVs, but distantly from the nudiviruses and baculoviruses. On the basis of the available morphological, (patho)biological, genomic and phylogenetic data, we propose that the two viruses are members of a new virus family named Hytrosaviridae. This proposed family currently comprises two unassigned species, G. pallidipes salivary gland hypertrophy virus and M. domestica salivary gland hypertrophy virus, and a tentative unassigned species, M. equestris salivary gland hypertrophy virus. Here, we present the characteristics and the justification for establishing this new virus famil

    Construction of a mutant library of horseradish peroxidase gene by directed evolution and development of an in situ screening method

    No full text
    A process of directed evolution applied to obtain a library of mutants of horseradish peroxidase (HRP) enzyme is described. We have introduced slight variations into the original DNA shuffling protocol. A DNA template was prepared by PCR amplification and digested with Dnase I during 1 hour. Dnase I products were concentrated by precipitation with isopropanol. Gel electrophoresis showed fragments of the desired size range (20-600 pb) without a full-length template remaining in the reaction mixture. A high concentration of fragments was crucial for performing PCR without primers. In this case, a template concentration of 32.5 ng/mu l was appropriate. Amplification of recombinant genes in a standard PCR reaction (template dilution 1:100) produced a smear with a low yield for the full-length sequence. A single product of the correct size was obtained by PCR with nested primers separated from the previously used primers by 40 pb. In our laboratory, native HRP has been functionally expressed in a baculovirus expression vector system. The purpose is to develop the screening of the first generation of random mutants in this system. To facilitate detection of those clones that have high peroxidase activity, we developed a rapid method: after five days postinfection agarose plates with six wells were covered with DAB (3,3´-diaminobenzidine) and H2O2. The appearance of brown-black stain allows visualization of up to 100 active clones/well in only 1 min

    Modelling the within-host growth of viral infections in insects

    Get PDF
    Insects are infected by a variety of pathogens, including bacteria, fungi and viruses, which have been studied largely for their potential as biocontrol agents, but are also important in insect conservation (biodiversity) and as model systems for other diseases. Whilst the dynamics of host–pathogen interactions are well-studied at the population level, less attention has been paid to the critical within-host infection stage. Here, the reproductive rate of the pathogen is largely determined by how it exploits the host; the resources supplied by the host in terms of size and condition; competition with other pathogens; and the speed with which it kills the host (death being an inevitable outcome for obligate-killing pathogens). In this paper we aim to build upon recent developments in the literature by conducting single infection bioassays to obtain data on growth and fitness parameters for phenotypically different and similar strains of nucleopolyhedroviruses in the Lepdipoteran host Spodoptera exigua. Using these data, a simple mechanistic mathematical model (a coupled system of differential equations) is derived, fitted and parameter sensitivity predictions are made which support empirical findings. We unexpectedly found that initial growth of virus within the host occurs at a double-exponential rate, which contrasts with empirical findings for vertebrate host–pathogen systems. Moreover, these infection rates differ between strains, which has significant implications for the evolution of virulence and strain coexistence in the field, which are still relative unknowns. Furthermore, our model predicts that, counter to intuition, increased viral doses may lead to a decrease in viral yield, which is supported by other studies. We explain the mechanism for this phenomenon and discuss its implications for insect host–pathogen ecology

    Two viruses that cause salivary gland hypertrophy in Glossina pallidipes and Musca domestica are closely related and form a distinct phylogenetic clade

    No full text
    Glossina pallidipes and Musca domestica salivary gland hypertrophy viruses (GpSGHV and MdSGHV) replicate in the nucleus of salivary gland cells causing distinct tissue hypertrophy and reduction of host fertility. They share general characteristics with the non-occluded insect nudiviruses, such as being insect-pathogenic, having enveloped, rod-shaped virions, and large circular double-stranded DNA genomes. MdSGHV measures 65x550 nm and contains a 124 279 bp genome (44 mol% G+C content) that codes for 108 putative open reading frames (ORFs). GpSGHV, measuring 50x1000 nm, contains a 190 032 bp genome (28 mol% G+C content) with 160 putative ORFs. Comparative genomic analysis demonstrates that 37 MdSGHV ORFs have homology to 42 GpSGHV ORFs, as some MdSGHV ORFs have homology to two different GpSGHV ORFs. Nine genes with known functions (dnapol, ts, pif-1, pif-2, pif-3, mmp, p74, odv-e66 and helicase-2), a homologue of the conserved baculovirus gene Ac81 and at least 13 virion proteins are present in both SGHVs. The amino acid identity ranged from 19 to 39 % among ORFs. An (A/T/G)TAAG motif, similar to the baculovirus late promoter motif, was enriched 100 bp upstream of the ORF transcription initiation sites of both viruses. Six and seven putative microRNA sequences were found in MdSGHV and GpSGHV genomes, respectively. There was genome. Collinearity between the two SGHVs, but not between the SGHVs and the nudiviruses. Phylogenetic analysis of conserved genes clustered both SGHVs in a single clade separated from the nudiviruses and baculoviruses. Although MdSGHV and GpSGHV are different viruses, their pathology, host range and genome composition indicate that they are relate
    corecore