1,922 research outputs found

    Auxiliary potential in no-core shell-model calculations

    Full text link
    The Lee-Suzuki iteration method is used to include the folded diagrams in the calculation of the two-body effective interaction veff(2)v^{(2)}_{\rm eff} between two nucleons in a no-core model space. This effective interaction still depends upon the choice of single-particle basis utilized in the shell-model calculation. Using a harmonic-oscillator single-particle basis and the Reid-soft-core {\it NN} potential, we find that veff(2)v^{(2)}_{\rm eff} overbinds ^4\mbox{He} in 0, 2, and 4ℏΩ4\hbar\Omega model spaces. As the size of the model space increases, the amount of overbinding decreases significantly. This problem of overbinding in small model spaces is due to neglecting effective three- and four-body forces. Contributions of effective many-body forces are suppressed by using the Brueckner-Hartree-Fock single-particle Hamiltonian.Comment: 14 text pages and 4 figures (in postscript, available upon request). AZ-PH-TH/94-2

    Tunneling Conductance Between Parallel Two Dimensional Electron Systems

    Full text link
    We derive and evaluate expressions for the low temperature {\it dc} equilibrium tunneling conductance between parallel two-dimensional electron systems. Our theory is based on a linear-response formalism and on impurity-averaged perturbation theory. The disorder broadening of features in the dependence of tunneling conductance on sheet densities and in-plane magnetic field strengths is influenced both by the finite lifetime of electrons within the wells and by non-momentum-conserving tunneling events. Disorder vertex corrections are important only for weak in-plane magnetic fields and strong interwell impurity-potential correlations. We comment on the basis of our results on the possibility of using tunneling measurements to determine the lifetime of electrons in the quantum wells.Comment: 14 pages, 5 Fig. not included, revtex, IUcm92-00

    Minimizing Effective Many-Body Interactions

    Full text link
    A simple two-level model is developed and used to test the properties of effective interactions for performing nuclear structure calculations in truncated model spaces. It is shown that the effective many-body interactions sensitively depend on the choice of the single-particle basis and they appear to be minimized when a self- consistent Hartree-Fock basis is used.Comment: (15 pages of text and 1 postscript figure (Figure available upon request), Preprint Number not assigned ye

    Quantum Lifetime of Two-Dimensional Holes

    Get PDF
    The quantum lifetime of two-dimensional holes in a GaAs/AlGaAs double quantum well is determined via tunneling spectroscopy. At low temperatures the lifetime is limited by impurity scattering but at higher temperatures hole-hole Coulomb scattering dominates. Our results are consistent with Fermi liquid theory, at least up to r_s = 11. At the highest temperatures the measured width of the hole spectral function becomes comparable to the Fermi energy. A new, tunneling-spectroscopic, method for determining the in-plane effective mass of the holes is also demonstrated.Comment: 5 pages, 4 figures. Published versio

    Novel NN interaction and the spectroscopy of light nuclei

    Get PDF
    Nucleon-nucleon (NN) phase shifts and the spectroscopy of A≤6A \le 6 nuclei are successfully described by an inverse scattering potential that is separable with oscillator form factors.Comment: 4 pages, 1 figure, 13 table

    Tunneling ``zero-bias'' anomaly in the quasi-ballistic regime

    Full text link
    For the first time, we study the tunneling density of states (DOS) of the interacting electron gas beyond the diffusive limit. A strong correction to the DOS persists even at electron energies exceeding the inverse transport relaxation time, which could not be expected from the well-known Altshuler-Aronov-Lee (AAL) theory. This correction originates from the interference between the electron waves scattered by an impurity and by the Friedel oscillation this impurity creates. Account for such processes also revises the AAL formula for the DOS in the diffusive limit.Comment: 4 pages, 2 .eps figures, submitted to Phys. Rev. Let

    Nuclear shell-model calculations for 6Li and 14N with different NN potentials

    Full text link
    Two ``phase-shift equivalent'' local NN potentials with different parametrizations, Reid93 and NijmII, which were found to give nearly identical results for the triton by Friar et al, are shown to yield remarkably similar results for 6Li and 14N in a (0+2)hw no-core space shell-model calculation. The results are compared with those for the widely used Hamada-Johnson hard-core and the original Reid soft-core potentials, which have larger deuteron D-state percentages. The strong correlation between the tensor strength and the nuclear binding energy is confirmed. However, many nuclear-structure properties seem to be rather insensitive to the details of the NN potential and, therefore, cannot be used to test various NN potentials. (Submitted to Phys. Rev. C on Nov. 9, 1993 as a Brief Report.)Comment: 12 text pages and 1 figure (Figure available upon request), University of Arizona Physics Preprint (Number not yet assigned

    The Coupled Cluster Method in Hamiltonian Lattice Field Theory

    Get PDF
    The coupled cluster or exp S form of the eigenvalue problem for lattice Hamiltonian QCD (without quarks) is investigated. A new construction prescription is given for the calculation of the relevant coupled cluster matrix elements with respect to an orthogonal and independent loop space basis. The method avoids the explicit introduction of gauge group coupling coefficients by mapping the eigenvalue problem onto a suitable set of character functions, which allows a simplified procedure. Using appropriate group theoretical methods, we show that it is possible to set up the eigenvalue problem for eigenstates having arbitrary lattice momentum and lattice angular momentum.Comment: LaTeX, no figur

    Simple approximation for the starting-energy-independent two-body effective interaction with applications to 6Li

    Full text link
    We apply the Lee-Suzuki iteration method to calculate the linked-folded diagram series for a new Nijmegen local NN potential. We obtain an exact starting-energy-independent effective two-body interaction for a multi-shell, no-core, harmonic-oscillator model space. It is found that the resulting effective-interaction matrix elements can be well approximated by the Brueckner G-matrix elements evaluated at starting energies selected in a simple way. These starting energies are closely related to the energies of the initial two-particle states in the ladder diagrams. The ``exact'' and approximate effective interactions are used to calculate the energy spectrum of 6Li in order to test the utility of the approximate form.Comment: 15 text pages and 2 PostScript figures (available upon request). University of Arizona preprint, Number unassigne

    Electron-electron interactions and two-dimensional - two-dimensional tunneling

    Full text link
    We derive and evaluate expressions for the dc tunneling conductance between interacting two-dimensional electron systems at non-zero temperature. The possibility of using the dependence of the tunneling conductance on voltage and temperature to determine the temperature-dependent electron-electron scattering rate at the Fermi energy is discussed. The finite electronic lifetime produced by electron-electron interactions is calculated as a function of temperature for quasiparticles near the Fermi circle. Vertex corrections to the random phase approximation substantially increase the electronic scattering rate. Our results are in an excellent quantitative agreement with experiment.Comment: Revtex style, 21 pages and 8 postscript figures in a separate file; Phys. Rev. B (in press
    • …
    corecore