49 research outputs found

    Phase transitions and noise crosscorrelations in a model of directed polymers in a disordered medium

    Full text link
    We show that effective interactions mediated by disorder between two directed polymers can be modelled as the crosscorrelation of noises in the Kardar-Parisi-Zhang (KPZ) equations satisfied by the respective free energies of these polymers. When there are two polymers, disorder introduces attractive interactions between them. We analyze the phase diagram in details and show that these interactions lead to new phases in the phase diagram. We show that, even in dimension d=1d=1, the two directed polymers see the attraction only if the strength of the disorder potential exceeds a threshold value. We extend our calculations to show that if there are mm polymers in the system then mm-body interactions are generated in the disorder averaged effective free energy.Comment: To appear in Phys. Rev. E(2000

    Thermodynamics of Random Ferromagnetic Antiferromagnetic Spin-1/2 Chains

    Full text link
    Using the quantum Monte Carlo Loop algorithm, we calculate the temperature dependence of the uniform susceptibility, the specific heat, the correlation length, the generalized staggered susceptibility and magnetization of a spin-1/2 chain with random antiferromagnetic and ferromagnetic couplings, down to very low temperatures. Our data show a consistent scaling behavior in all the quantities and support strongly the conjecture drawn from the approximate real-space renormalization group treatment.A statistical analysis scheme is developed which will be useful for the search of scaling behavior in numerical and experimental data of random spin chains.Comment: 13 pages, 13 figures, RevTe

    Scientific Highlights of the HETE-2 Mission

    Full text link
    The HETE-2 mission has been highly productive. It has observed more than 250 GRBs so far. It is currently localizing 25 - 30 GRBs per year, and has localized 43 GRBs to date. Twenty-one of these localizations have led to the detection of X-ray, optical, or radio afterglows, and as of now, 11 of the bursts with afterglows have known redshifts. HETE-2 has confirmed the connection between GRBs and Type Ic supernovae, a singular achievement and certainly one of the scientific highlights of the mission so far. It has provided evidence that the isotropic-equivalent energies and luminosities of GRBs are correlated with redshift, implying that GRBs and their progenitors evolve strongly with redshift. Both of these results have profound implications for the nature of GRB progenitors and for the use of GRBs as a probe of cosmology and the early universe. HETE-2 has placed severe constraints on any X-ray or optical afterglow of a short GRB. It is also solving the mystery of "optically dark' GRBs, and revealing the nature of X-ray flashes.Comment: 10 pages, 9 figures, to appear in proc. "The Restless High-Energy Universe", Royal Tropical Institute, Amsterdam; revised text, added ref

    The LHS 1678 System: Two Earth-sized Transiting Planets and an Astrometric Companion Orbiting an M Dwarf Near the Convective Boundary at 20 pc

    Get PDF
    We present the Transiting Exoplanet Survey Satellite (TESS) discovery of the LHS 1678 (TOI-696) exoplanet system, comprised of two approximately Earth-sized transiting planets and a likely astrometric brown dwarf orbiting a bright (V J = 12.5, K s = 8.3) M2 dwarf at 19.9 pc. The two TESS-detected planets are of radius 0.70 ± 0.04 R ⊕ and 0.98 ± 0.06 R ⊕ in 0.86 day and 3.69 day orbits, respectively. Both planets are validated and characterized via ground-based follow-up observations. High Accuracy Radial Velocity Planet Searcher RV monitoring yields 97.7 percentile mass upper limits of 0.35 M ⊕ and 1.4 M ⊕ for planets b and c, respectively. The astrometric companion detected by the Cerro Tololo Inter-American Observatory/Small and Moderate Aperture Telescope System 0.9 m has an orbital period on the order of decades and is undetected by other means. Additional ground-based observations constrain the companion to being a high-mass brown dwarf or smaller. Each planet is of unique interest; the inner planet has an ultra-short period, and the outer planet is in the Venus zone. Both are promising targets for atmospheric characterization with the James Webb Space Telescope and mass measurements via extreme-precision radial velocity. A third planet candidate of radius 0.9 ± 0.1 R ⊕ in a 4.97 day orbit is also identified in multicycle TESS data for validation in future work. The host star is associated with an observed gap in the lower main sequence of the Hertzsprung-Russell diagram. This gap is tied to the transition from partially to fully convective interiors in M dwarfs, and the effect of the associated stellar astrophysics on exoplanet evolution is currently unknown. The culmination of these system properties makes LHS 1678 a unique, compelling playground for comparative exoplanet science and understanding the formation and evolution of small, short-period exoplanets orbiting low-mass stars

    HD 213885b: A transiting 1-d-period super-Earth with an Earth-like composition around a bright (V = 7.9) star unveiled by TESS

    Get PDF
    We report the discovery of the 1.008-d, ultrashort period (USP) super-Earth HD 213885b (TOI-141b) orbiting the bright (V= 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 ±0.6M⊙ for this 1.74±0.05R⊙ exoplanet, which provides enough information to constrain its bulk composition - similar to Earth's but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whose minimum mass of 19.9 ± 1.4 M⊙ makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed
    corecore