367 research outputs found

    Genetic diversity in Indian isolates of Fusarium oxysporum f. sp. ciceris, chickpea wilt pathogen

    Get PDF
    Forty-eight isolates of FOC collected from different chickpea growing regions in India were evaluated for genetic variations using amplified fragment length polymorphism (AFLP). Out of 48 isolates, 41 were found pathogenic and seven non-pathogenic. Pathogenic isolates differ in their virulence however; there was no apparent correlation between geographical origin and virulence of the isolates. The genetic variation was evaluated by the AFLP analysis. A total 339 fragments were scored following selective amplification with five EcoR1 and Mse1 primer combinations E-TC/M-CAT, E-TC/M-CAC, E-AC/M-CAG, E-TA/MCAG, E-TA/M-CAG, out of which 331 fragments were polymorphic. UPGMA cluster analysis and principle coordinate analysis distinctly classified 48 isolates into two major groups; pathogenic and non-pathogenic. The pathogenic isolates could be further clustered into six major groups at 0.77 genetic similarities. Region specific grouping was observed with in few isolates. The results of the present study provide evidence of the high discriminatory power of AFLP analysis, suggesting the applicability of this method to the molecular characterization of Fusarium oxysporum f.sp. ciceris

    Orange Photoluminescence from Hydrothermally Grown Zno Nanorods and Study on its Defects

    Get PDF
    The visible photoluminescence (PL) of ZnO is controversial for a long time. At present, the contribution of oxygen interstitial defects to yellow/orange emission from ZnO nanostructures is on debate. In this report, the origin of orange emission from solution- grown ZnO nanorods is investigated using excitation wavelength dependent photoluminescence PL, PL excitation and UV-Vis spectra. These results showed that orange emission may be due to the transition of an electron from shallow defect levels positioned slightly below the conduction band to the singly ionized oxygen vacancies. Hence, it is believed that oxygen interstitials may not be responsible for orange emission from solution grown ZnO nanostructures

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Get PDF
    Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed

    Baryons: What, When and Where?

    Full text link
    We review the current state of empirical knowledge of the total budget of baryonic matter in the Universe as observed since the epoch of reionization. Our summary examines on three milestone redshifts since the reionization of H in the IGM, z = 3, 1, and 0, with emphasis on the endpoints. We review the observational techniques used to discover and characterize the phases of baryons. In the spirit of the meeting, the level is aimed at a diverse and non-expert audience and additional attention is given to describe how space missions expected to launch within the next decade will impact this scientific field.Comment: Proceedings Review for "Astrophysics in the Next Decade: JWST and Concurrent Facilities", ed. X. Tielens, 38 pages, 10 color figures. Revised to address comments from the communit
    • …
    corecore