91 research outputs found

    Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials

    Get PDF
    This paper assesses the feasibility of two industrial wastes, fly ash (FA) and rice husk ash (RHA), as raw materials for the production of geopolymeric pastes. Three typologies of samples were thus produced: (i) halloysite activated with potassium hydroxide and nanosilica, used as the reference sample (HL-S); (ii) halloysite activated with rice husk ash dissolved into KOH solution (HL-R); (iii) FA activated with the alkaline solution realized with the rice husk ash (FA-R). Dense and porous samples were produced and characterized in terms of mechanical properties and environmental impact. The flexural and compressive strength of HL-R reached about 9 and 43 MPa, respectively. On the contrary, the compressive strength of FA-R is significantly lower than the HL-R one, in spite of a comparable flexural strength being reached. However, when porous samples are concerned, FA-R shows comparable or even higher strength than HL-R. Thus, the current results show that RHA is a valuable alternative to silica nanopowder to prepare the activator solution, to be used either with calcined clay and fly ash feedstock materials. Finally, a preliminary evaluation of the global warming potential (GWP) was performed for the three investigated formulations. With the mix containing FA and RHA-based silica solution, a reduction of about 90% of GWP was achieved with respect to the values obtained for the reference formulatio

    New Concepts for Next Generation of High Performance Concretes

    Get PDF
    AbstractWith the development of high-speed railway, long span bridges and high-rise buildings, new concretes need to increase strength and toughness. Adding fibers to concrete matrix has been long recognized as a way to enhance the energy absorption capacity and crack resistance of the plain concrete. In recent years, particular attention has been paid to the distribution of fibers: very small and well dispersed fibers may control the microcracks in the matrix from the very beginning of their opening and particularly high deformability of the composite may be obtained [3–5]. Carbon nanotubes (CNTs) used as reinforcing fibers has been also explored [6–8], the functional effect of their addition in a concrete equals to the one obtained with the addition of fibers. CNTs also provide a better ductility and an increase of the fracture energy. However, agglomeration and the relative high price seem to limit their application in cement based composite materials [14]. In this work, the potential beneficial effects of carbon micro/nanoparticles addition to cement pastes for improving the mechanical properties of the resulting composites has been investigated [15]. Pyrolyzed polyethylene beads (CNBs) and coconuts shells (Cocos nucifera, CCNs) were produced at Politecnico di Torino and characterized by Raman spectroscopy, thermogravimetry and scanning electron microscopy (SEM). When added to cement paste, up to 0.08 wt%, both materials were effective in increasing the cement matrix compressive strength and toughness. From SEM observations it is evident that the presence of these small particles disturb the propagation of microcracks, which has to deviate from its trajectory and has to follow the carbon nano/micro-particles contour. This mechanism increases strongly the fracture surface during the test performed by imposing the monotonic increment of crack opening. Crack and crack pinning are the mechanisms which can explain the increase of toughness in the composite samples

    Modified fracture properties of cement composites with nano/micro carbonized bagasse fibers

    Get PDF
    A novel cost-effective alternative in the form of nano/micro carbonized particles produced from waste bagasse fibers has been explored to modify the mechanical properties and fracture pattern of the resulting cementitious composites. Carbonized bagasse particles were produced at Politecnico di Torino and characterized by Raman spectroscopy and scanning electron microscopy. When added with cement paste up to 1 wt% in six different proportions, the carbonized bagasse particles were found effective in significant enhancement of mechanical strength as well as fracture toughness. From micro-graphical observations it is evident that these heterogenic inclusions either block the propagation of micro cracks which has to deviate from its straight trajectory and has to follow the carbon nano/micro particles contour or distribute it into multiple finer cracks. Crack contouring along the carbonized particle, crack pinning, crack diversions and crack branching are the mechanisms which can explain the increase of toughness in the composite samples
    • …
    corecore