141 research outputs found

    Corticospinal beta-band synchronization entails rhythmic gain modulation

    Get PDF
    Rhythmic synchronization of neurons in the beta or gamma band occurs almost ubiquitously, and this synchronization has been linked to numerous nervous system functions. Many respective studies make the implicit assumption that neuronal synchronization affects neuronal interactions. Indeed, when neurons synchronize, their output spikes reach postsynaptic neurons together, trigger coincidence detection mechanisms, and therefore have an enhanced impact. There is ample experimental evidence demonstrating this consequence of neuronal synchronization, but beyond this, beta/gamma-band synchronization within a group of neurons might also modulate the impact of synaptic input to that synchronized group. This would constitute a separate mechanism through which synchronization affects neuronal interactions, but direct in vivo evidence for this putative mechanism is lacking. Here, we demonstrate that synchronized beta-band activity of a neuronal group modulates the efficacy of synaptic input to that group in-phase with the beta rhythm. This response modulation was not an addition of rhythmic activity onto the average response but a rhythmic modulation of multiplicative input gain. Our results demonstrate that beta-rhythmic activity of a neuronal target group multiplexes input gain along the rhythm cycle. The actual gain of an input then depends on the precision and the phase of its rhythmic synchronization to this target, providing one mechanistic explanation for why synchronization modulates interactions

    Dietary restraint and control over "wanting" following consumption of "forbidden" food.

    Get PDF
    Eating behavior can be influenced by the rewarding value of food, i.e., "liking" and "wanting." The objective of this study was to assess in normal-weight dietary restrained (NR) vs. unrestrained (NU) eaters how rewarding value of food is affected by satiety, and by eating a nonhealthy perceived, dessert-specific food vs. a healthy perceived, neutral food (chocolate mousse vs. cottage cheese). Subjects (24NR age = 25.0 +/- 8.2 years, BMI = 22.3 +/- 2.1 kg/m(2); 26NU age = 24.8 +/- 8.0 years, BMI = 22.1 +/- 1.7 kg/m(2)) came to the university twice, fasted (randomized crossover design). Per test-session "liking" and "wanting" for 72 items divided in six categories (bread, filling, drinks, dessert, sweets, stationery (placebo)) was measured, before and after consumption of chocolate mousse/cottage cheese, matched for energy content (5.6 kJ/g) and individual daily energy requirements (10%). Chocolate mousse was liked more than cottage cheese (P < 0.05). After consumption of chocolate mousse or cottage cheese, appetite and "liking" vs. placebo were decreased in NR and NU (P < 0.03), whereas "wanting" was only decreased in NR vs. NU (P </= 0.01). In NR vs. NU "wanting" was specifically decreased after chocolate mousse vs. cottage cheese; this decrease concerned especially "wanting" for bread and filling (P < 0.05). To conclude, despite similar decreases in appetite and "liking" after a meal in NR and NU, NR decrease "wanting" in contrast to NU. NR decrease "wanting" specifically for a nonhealthy perceived, "delicious," dessert-specific food vs. a nutritional identical, yet healthy perceived, slightly less "delicious," "neutral" food. A healthy perceived food may thus impose greater risk for control of energy intake in NR

    Low-Frequency Oscillations Code Speech during Verbal Working Memory

    Get PDF
    Item does not contain fulltextThe way the human brain represents speech in memory is still unknown. An obvious characteristic of speech is its evolvement over time. During speech processing, neural oscillations are modulated by the temporal properties of the acoustic speech signal, but also acquired knowledge on the temporal structure of language influences speech perception-related brain activity. This suggests that speech could be represented in the temporal domain, a form of representation that the brain also uses to encode autobiographic memories. Empirical evidence for such a memory code is lacking. We investigated the nature of speech memory representations using direct cortical recordings in the left perisylvian cortex during delayed sentence reproduction in female and male patients undergoing awake tumor surgery. Our results reveal that the brain endogenously represents speech in the temporal domain. Temporal pattern similarity analyses revealed that the phase of frontotemporal low-frequency oscillations, primarily in the beta range, represents sentence identity in working memory. The positive relationship between beta power during working memory and task performance suggests that working memory representations benefit from increased phase separation.SIGNIFICANCE STATEMENT Memory is an endogenous source of information based on experience. While neural oscillations encode autobiographic memories in the temporal domain, little is known on their contribution to memory representations of human speech. Our electrocortical recordings in participants who maintain sentences in memory identify the phase of left frontotemporal beta oscillations as the most prominent information carrier of sentence identity. These observations provide evidence for a theoretical model on speech memory representations and explain why interfering with beta oscillations in the left inferior frontal cortex diminishes verbal working memory capacity. The lack of sentence identity coding at the syllabic rate suggests that sentences are represented in memory in a more abstract form compared with speech coding during speech perception and production

    Does plasmid-based beta-lactam resistance increase E. coli infections: Modelling addition and replacement mechanisms

    Get PDF
    Infections caused by antibiotic-resistant bacteria have become more prevalent during past decades. Yet, it is unknown whether such infections occur in addition to infections with antibiotic-susceptible bacteria, thereby increasing the incidence of infections, or whether they replace such infections, leaving the total incidence unaffected. Observational longitudinal studies cannot separate both mechanisms. Using plasmid-based beta-lactam resistant E. coli as example we applied mathematical modelling to investigate whether seven biological mechanisms would lead to replacement or addition of infections. We use a mathematical neutral null model of individuals colonized with susceptible and/or resistant E. coli, with two mechanisms implying a fitness cost, i.e., increased clearance and decreased growth of resistant strains, and five mechanisms benefitting resistance, i.e., 1) increased virulence, 2) increased transmission, 3) decreased clearance of resistant strains, 4) increased rate of horizontal plasmid transfer, and 5) increased clearance of susceptible E. coli due to antibiotics. Each mechanism is modelled separately to estimate addition to or replacement of antibiotic-susceptible infections. Fitness costs cause resistant strains to die out if other strain characteristics are maintained equal. Under the assumptions tested, increased virulence is the only mechanism that increases the total number of infections. Other benefits of resistance lead to replacement of susceptible infections without changing the total number of infections. As there is no biological evidence that plasmid-based beta-lactam resistance increases virulence, these findings suggest that the burden of disease is determined by attributable effects of resistance rather than by an increase in the number of infections

    Biased competition through variations in amplitude of γ-oscillations

    Get PDF
    Experiments in visual cortex have shown that the firing rate of a neuron in response to the simultaneous presentation of a preferred and non-preferred stimulus within the receptive field is intermediate between that for the two stimuli alone (stimulus competition). Attention directed to one of the stimuli drives the response towards the response induced by the attended stimulus alone (selective attention). This study shows that a simple feedforward model with fixed synaptic conductance values can reproduce these two phenomena using synchronization in the gamma-frequency range to increase the effective synaptic gain for the responses to the attended stimulus. The performance of the model is robust to changes in the parameter values. The model predicts that the phase locking between presynaptic input and output spikes increases with attention

    A tutorial review of functional connectivity analysis methods and their interpretational pitfalls

    Get PDF
    Contains fulltext : 150693.pdf (publisher's version ) (Open Access)13 p

    The do's and don'ts for electrophysiological connectivity analysis

    No full text
    Contains fulltext : 219219.pdf (Publisher’s version ) (Open Access)In recent years it has been increasingly recognized that insight into the dynamics of interareal interactions is crucial for our understanding of normal and pathological brain function. Methodological developments and open source availability of advanced analysis tools have enabled the wider neuroscientific community to estimate a wide range of connectivity metrics from non-invasively obtained electrophysiological signals. Next to deciding on an appropriate analysis strategy, researchers are faced with the challenge to correctly interpret their findings. Volume conduction and electromagnetic field spread cause neuronal signals to be picked up by multiple channels at once, causing spurious estimates of connectivity. Comparison across experimental groups and conditions may be confounded by differences in univariate signal properties such as signal-to-noise ratio. I will illustrate some of these interpretational pitfalls and provide some recommendations that may need to be taken into account to improve the validity of the interpretation of EEG/MEG connectivity studies.1 p

    Neuronal communication through coherence in the human motor system

    No full text
    This thesis explores the concept of neuronal communication through oscillatory synchronization. For most of the described research, we used the human motor system as a model system, in particular the cortico spinal system, in combination with non invasive recording techniques. Oscillatory synchronization is a well known property of neuronal activity in the motor system, both within brain regions, and between brain regions and the spinal cord. We used the coherence measure to quantify oscillatory synchronization between neuronal groups. We tested the underlying hypothesis that oscillatory synchronization subserves neuronal communication. We took three different approaches to investigate coherence: 1: Chapter 2 and 3 present data of experiments in which the relation between oscillatory neuronal synchronization and behaviour was investigated. Chapter 2 describes an experiment that provides support for the hypothesis that oscillatory synchronization within and between neuronal groups enhances neuronal communication and is behaviourally relevant. In chapter 3 an experiment is described, in which local and long range oscillatory synchrony was studied in the human motor system during a cued reaction time task. 2.: Chapter 4 describes a study in which coherence was used as a signature of neuronal interaction to identify a functional network involved in motor control. 3.: In chapter 5 and 6 we adopt a more mechanistic view on coherence. We test the prediction that phase locked oscillatory activity between neuronal groups makes their interaction effective and selective. The data presented in chapter 5 were obtained from the human motor system, and the data presented in chapter 6 were from the visual system of awake cats and monkey
    corecore