10 research outputs found

    Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research

    Get PDF
    Seeds play a fundamental role in colonization of the environment by spermatophytes, and seeds harvested from crops are the main food source for human beings. Knowledge of seed biology is therefore important for both fundamental and applied issues. This review on seed biology illustrates the important progress made in the field of Arabidopsis seed research over the last decade. Access to ‘omics’ tools, including the inventory of genes deduced from sequencing of the Arabidopsis genome, has speeded up the analysis of biological functions operating in seeds. This review covers the following processes: seed and seed coat development, seed reserve accumulation, seed dormancy and seed germination. We present new insights in these various fields and describe ongoing biotechnology approaches to improve seed characteristics in crops

    Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis

    Get PDF
    TT8/bHLH042 is a key regulator of anthocyanins and proanthocyanidins (PAs) biosynthesis in Arabidopsis thaliana. TT8 transcriptional activity has been studied extensively, and relies on its ability to form, with several R2R3-MYB and TTG1 (WD-Repeat protein), different MYB-bHLH-WDR (MBW) protein complexes. By contrast, little is known on how TT8 expression is itself regulated.Transcriptional regulation of TT8 expression was studied using molecular, genetic and biochemical approaches. Functional dissection of the TT8 promoter revealed its modular structure. Two modules were found to specifically drive TT8 promoter activity in PA- and anthocyanin-accumulating cells, by differentially integrating the signals issued from different regulators, in a spatio-temporal manner. Interestingly, this regulation involves at least six different MBW complexes, and an unpredicted positive feedback regulatory loop between TT8 and TTG2. Moreover, the results suggest that some putative new regulators remain to be discovered. Finally, specific cis-regulatory elements through which TT8 expression is regulated were identified and characterized. Together, these results provide a molecular model consistent with the specific and highly regulated expression of TT8. They shed new light into the transcriptional regulation of flavonoid biosynthesis and provide new clues and tools for further investigation in Arabidopsis and other plant species

    Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria 9 ananassa) fruits

    No full text
    ‱Strawberry (Fragaria × ananassa) fruits contain high concentrations of flavonoids. In unripe strawberries, the flavonoids are mainly represented by proanthocyanidins (PAs), while in ripe fruits the red-coloured anthocyanins also accumulate. Most of the structural genes leading to PA biosynthesis in strawberry have been characterized, but no information is available on their transcriptional regulation. In Arabidopsis thaliana the expression of the PA biosynthetic genes is specifically induced by a ternary protein complex, composed of AtTT2 (AtMYB123), AtTT8 (AtbHLH042) and AtTTG1 (WD40-repeat protein).‱A strategy combining yeast-two-hybrid screening and agglomerative hierarchical clustering of transcriptomic and metabolomic data was undertaken to identify strawberry PA regulators.‱Among the candidate genes isolated, four were similar to AtTT2, AtTT8 and AtTTG1 (FaMYB9/FaMYB11, FabHLH3 and FaTTG1, respectively) and two encode putative negative regulators (FaMYB5 and FabHLH3∆). Interestingly, FaMYB9/FaMYB11, FabHLH3 and FaTTG1 were found to complement the tt2-1, tt8-3 and ttg1-1 transparent testa mutants, respectively. In addition, they interacted in yeast and activated the Arabidopsis BANYULS (anthocyanidin reductase) gene promoter when coexpressed in Physcomitrella patens protoplasts.‱Taken together, these results demonstrated that FaMYB9/FaMYB11, FabHLH3 and FaTTG1 are the respective functional homologues of AtTT2, AtTT8 and AtTTG1, providing new tools for modifying PA content and strawberry fruit quality.<br/

    Cytochromes P450

    No full text

    Acyl-Lipid Metabolism

    No full text
    corecore