24 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Local Structure in Mg1xAlxB2Mg_{1-x}Al_{x}B_{2} System by High Resolution Neutron Diffraction

    No full text
    The local structure in high temperature superconductors is nowadays considered a key point for understanding superconductivity mechanism. MgB2 has a well-known simple structure; but its local structure remains quite unexplored. This is due to the fact that typical x-ray local probes, such as EXAFS, fail when used to study local structure of light atoms, such as Mg and B. We used high resolution neutron diffraction with pair distribution function (PDF) analysis for investigating disorder on the atomic scale in the Al doped Mg1-xAlxB2 system. The results indicate an anisotropic structural inhomogeneity along the c-axis that could be related with the delocalized metallic-type bonding between Boron layers.Comment: Campi, G., Ricci, A., & Bianconi, A. (2012). Local structure in mg1-x al x b2 system by high resolution neutron diffraction. Journal of Superconductivity and Novel Magnetis
    corecore