1,273 research outputs found

    High-resolution 3D optical microscopy inside the beating zebrafish heart using prospective optical gating

    Get PDF
    3D fluorescence imaging is a fundamental tool in the study of functional and developmental biology, but effective imaging is particularly difficult in moving structures such as the beating heart. We have developed a non-invasive real-time optical gating system that is able to exploit the periodic nature of the motion to acquire high resolution 3D images of the normally-beating zebrafish heart without any unnecessary exposure of the sample to harmful excitation light. In order for the image stack to be artefact-free, it is essential to use a synchronization source that is invariant as the sample is scanned in 3D. We therefore describe a scheme whereby fluorescence image slices are scanned through the sample while a brightfield camera sharing the same objective lens is maintained at a fixed focus, with correction of sample drift also included. This enables us to maintain, throughout an extended 3D volume, the same standard of synchronization we have previously demonstrated in and near a single 2D plane. Thus we are able image the complete beating zebrafish heart exactly as if the heart had been artificially stopped, but sidestepping this undesirable interference with the heart and instead allowing the heart to beat as normal

    Adaptive Optimisation of Illumination Beam Profiles in Fluorescence Microscopy

    Get PDF
    Wide-field fluorescence microscope techniques such as single/selective plane illumination microscope (SPIM) are typically configured to image large regions of a sample at once. Here the illumination beam provides uniform excitation of several biological features across the region, `sliced' to a thickness of between 5-10 microns. In this paper we propose a simple alteration to the optical configuration of a SPIM by switching the light-sheet- forming cylindrical lens with a spatial light modulator. This has the potential to adaptively reconfigure the light sheet geometry to improve the optical sectioning of specific biological features, rather than the thicker sectioning of several features at once across a larger observation field-of-view. We present a prototype version of such a system, referred to as an Adaptive-SPIM (A-SPIM) system. We then suggest that the direct recording of illumination beam shapes within the working microscope system can better facilitate the analysis and subsequent re-configuration of the illumination beam to a specific geometry, and summarise the design and operation of a device that we have developed specifically for this purpose. We finally present reconstructed quantitative three dimensional flux maps of illumination beams from three microscope configurations taken using this miniature high-dynamic range beam profiling device, comparing the beam geometry of a regular SPIM system with our prototype A-SPIM system, and suggesting future improvements

    Light sheet adaptive optics microscope for 3D live imaging

    Full text link
    We report on the incorporation of adaptive optics (AO) into the imaging arm of a selective plane illumination microscope (SPIM). SPIM has recently emerged as an important tool for life science research due to its ability to deliver high-speed, optically sectioned, time-lapse microscope images from deep within in vivo selected samples. SPIM provides a very interesting system for the incorporation of AO as the illumination and imaging paths are decoupled and AO may be useful in both paths. In this paper, we will report the use of AO applied to the imaging path of a SPIM, demonstrating significant improvement in image quality of a live GFP-labeled transgenic zebrafish embryo heart using a modal, wavefront sensorless approach and a heart synchronization method. These experimental results are linked to a computational model showing that significant aberrations are produced by the tube holding the sample in addition to the aberration from the biological sample itself

    Emergent properties in optically bound matter

    Get PDF
    Sub-micron particles have been observed to spontaneously form regular two-dimensional structures in counterpropagating evanescent laser fields. We show that collective properties of large numbers of optically-trapped particles can be qualitatively different to the properties of small numbers. This is demonstrated both with a computer model and with experimental results. As the number of particles in the structure is increased, optical binding forces can be sufficiently large to overcome the optical landscape imposed by the interference fringes of the laser beams and impose a different, competing structure

    Numerical analysis of piled embankments on soft soils

    Get PDF
    The construction of embankments on soft soils is a common problem. Soft soil cannot sustain external loads without having large deformations. Piled embankments system provides a possible solution for the construction of roads and railways over soft soils. Until now, the system behaviour could only be described by analytical models such as those included in British or German codes. This paper describes research undertaken to investigate the effects of pile embankment construction in soft soils. Experimental results are used to help investigate arching effect developed due to differential settlement between pile and surrounding soft soil. A numerical parametric study was carried out to examine the impact of various soil parameters on the pile-embankment system behaviour. The outcome of the parametric study implemented using numerical analysis has been investigated and discussed throughout this paper. Based on the numerical analysis carried out in this research, it was found that the earth pressure coefficient normalized by the passive earth pressure Kp plotted on a vertical profile at the midpoint between piles can give a good illustration of arching behaviour. The findings presented in this paper can be considered as guides for numerical analysis and design criteria of soil arching for embankments constructed over piles

    Adaptive optimisation of illumination beam profiles in fluorescence microscopy

    Get PDF
    Wide-field fluorescence microscope techniques such as single/selective plane illumination microscope (SPIM) are typically configured to image large regions of a sample at once. Here the illumination beam provides uniform excitation of several biological features across the region, `sliced' to a thickness of between 5-10 microns. In this paper we propose a simple alteration to the optical configuration of a SPIM by switching the light-sheet- forming cylindrical lens with a spatial light modulator. This has the potential to adaptively reconfigure the light sheet geometry to improve the optical sectioning of specific biological features, rather than the thicker sectioning of several features at once across a larger observation field-of-view. We present a prototype version of such a system, referred to as an Adaptive-SPIM (A-SPIM) system. We then suggest that the direct recording of illumination beam shapes within the working microscope system can better facilitate the analysis and subsequent re-configuration of the illumination beam to a specific geometry, and summarise the design and operation of a device that we have developed specifically for this purpose. We finally present reconstructed quantitative three dimensional flux maps of illumination beams from three microscope configurations taken using this miniature high-dynamic range beam profiling device, comparing the beam geometry of a regular SPIM system with our prototype A-SPIM system, and suggesting future improvements

    Potato cultivar response to seasonal drought patterns

    Get PDF
    The ability to minimize potato yield and quality losses due to drought can be greatly improved by understanding the relative responses of different cultivars to seasonal variations in water supply. To address this need, we initiated a two year field experiment to determine the responses of the six potato cultivars to different seasonal drought patterns, including 1) full season irrigation at 100% ET, 2) irrigation at 100% ET terminated during late bulking , 3) full season irrigation at 70% ET , 4) irrigation at 70% ET terminated during late bulking , and 5) a gradual reduction in irrigation from 100% ET during tuber initiation through early bulking, to 70% ET during mid-bulking, and 50% ET through late bulking. GemStar Russet and Ranger Russet, two medium-late maturing cultivars, generally produced the highest yields across the range of drought treatments, but both were fairly sensitive to changes in drought severity. Alturas, a late maturing cultivar, produced relatively high yields with full irrigation, but exhibited the greatest sensitivity to increasing drought severity, particularly when severe late-season water deficits were imposed. Yields for the early maturing cultivar Russet Norkotah were relatively low overall, but it was the least sensitive to changes in drought severity, particularly when late season drought was imposed. Russet Burbank produced comparatively high total yields across the range of drought treatments, but U.S. No. 1 yields were substantially reduced by each seasonal drought pattern. However, it was less sensitive to changes in drought severity than GemStar Russet, Ranger Russet and Alturas. Total and U.S. No. 1 yields for Summit Russet were low for each drought treatment and it exhibited intermediate sensitivity to changes in drought severity. GemStar Russet had the highest water use efficiency based on U.S. No. 1 yield
    corecore