8 research outputs found

    Intersecting Quantum Gravity with Noncommutative Geometry - a Review

    No full text
    We review applications of noncommutative geometry in canonical quantum gravity. First, we show that the framework of loop quantum gravity includes natural noncommutative structures which have, hitherto, not been explored. Next, we present the construction of a spectral triple over an algebra of holonomy loops. The spectral triple, which encodes the kinematics of quantum gravity, gives rise to a natural class of semiclassical states which entail emerging fermionic degrees of freedom. In the particular semiclassical approximation where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. We end the paper with an extended outlook section

    On the IR/UV mixing and experimental limits on the parameters of canonical noncommutative spacetimes

    Get PDF
    We investigate some issues that are relevant for the derivation of experimental limits on the parameters of canonical noncommutative spacetimes. By analyzing a simple Wess-Zumino-type model in canonical noncommutative spacetime with soft supersymmetry breaking we explore the implications of ultraviolet supersymmetry on low-energy phenomenology. The fact that new physics in the ultraviolet can modify low-energy predictions affects significantly the derivation of limits on the noncommutativity parameters based on low-energy data. These are, in an appropriate sense here discussed, ``conditional limits''. We also find that some standard techniques for an effective low-energy description of theories with non-locality at short distance scales are only applicable in a regime where theories in canonical noncommutative spacetime lack any predictivity, because of the strong sensitivity to unknown UV physics. It appears useful to combine high-energy data, from astrophysics, with the more readily available low-energy data.Comment: 14 page

    Nonperturbative studies of fuzzy spheres in a matrix model with the Chern-Simons term

    Full text link
    Fuzzy spheres appear as classical solutions in a matrix model obtained via dimensional reduction of 3-dimensional Yang-Mills theory with the Chern-Simons term. Well-defined perturbative expansion around these solutions can be formulated even for finite matrix size, and in the case of kk coincident fuzzy spheres it gives rise to a regularized U(kk) gauge theory on a noncommutative geometry. Here we study the matrix model nonperturbatively by Monte Carlo simulation. The system undergoes a first order phase transition as we change the coefficient (α\alpha) of the Chern-Simons term. In the small α\alpha phase, the large NN properties of the system are qualitatively the same as in the pure Yang-Mills model (α=0\alpha =0), whereas in the large α\alpha phase a single fuzzy sphere emerges dynamically. Various `multi fuzzy spheres' are observed as meta-stable states, and we argue in particular that the kk coincident fuzzy spheres cannot be realized as the true vacuum in this model even in the large NN limit. We also perform one-loop calculations of various observables for arbitrary kk including k=1k=1. Comparison with our Monte Carlo data suggests that higher order corrections are suppressed in the large NN limit.Comment: Latex 37 pages, 13 figures, discussion on instabilities refined, references added, typo corrected, the final version to appear in JHE

    The role of the Seiberg–Witten field redefinition in renormalization of noncommutative chiral electrodynamics

    No full text
    It has been conjectured in the literature that renormalizability of the θ\theta-expanded noncommutative gauge theories improves when one takes into account full nonuniqueness of the Seiberg-Witten expansion, which relates noncommutative (`high-energy') with commutative (`low-energy') fields. In order to check this conjecture we analyze renormalizability of the noncommutative chiral electrodynamics: we quantize the action which contains all possible terms implied by the SW map. After renormalization we arrive at a different theory in which the relation between the coupling constants is changed. This means that the θ\theta-expanded chiral electrodynamics is not renormalizable: when fermions are included, the SW expansion is not preserved in quantization.Comment: 16 page
    corecore