Abstract

We investigate some issues that are relevant for the derivation of experimental limits on the parameters of canonical noncommutative spacetimes. By analyzing a simple Wess-Zumino-type model in canonical noncommutative spacetime with soft supersymmetry breaking we explore the implications of ultraviolet supersymmetry on low-energy phenomenology. The fact that new physics in the ultraviolet can modify low-energy predictions affects significantly the derivation of limits on the noncommutativity parameters based on low-energy data. These are, in an appropriate sense here discussed, ``conditional limits''. We also find that some standard techniques for an effective low-energy description of theories with non-locality at short distance scales are only applicable in a regime where theories in canonical noncommutative spacetime lack any predictivity, because of the strong sensitivity to unknown UV physics. It appears useful to combine high-energy data, from astrophysics, with the more readily available low-energy data.Comment: 14 page

    Similar works