17 research outputs found

    Thalamic afferents to prefrontal cortices from ventral motor nuclei in decision鈥恗aking

    Get PDF
    The focus of this literature review is on the three interacting brain areas that participate in decision-making: basal ganglia, ventral motor thalamic nuclei, and medial prefrontal cortex, with an emphasis on the participation of the ventromedial and ventral anterior motor thalamic nuclei in prefrontal cortical function. Apart from a defining input from the mediodorsal thalamus, the prefrontal cortex receives inputs from ventral motor thalamic nuclei that combine to mediate typical prefrontal functions such as associative learning, action selection, and decision-making. Motor, somatosensory and medial prefrontal cortices are mainly contacted in layer 1 by the ventral motor thalamic nuclei and in layer 3 by thalamocortical input from mediodorsal thalamus. We will review anatomical, electrophysiological, and behavioral evidence for the proposed participation of ventral motor thalamic nuclei and medial prefrontal cortex in rat and mouse motor decision-making

    Preparation, characterization and catalytic behavior for propanepartial oxidation of Ga-promoted MoVTeO catalysts

    Full text link
    [EN] Two sets of Ga-promoted MoVTeO catalysts were synthesized hydrothermally and heat-treated at 600 degrees C in N-2: (i) materials prepared from gels with Mo/V/Te/Ga atomic ratios of 1/0.60/0.17/x (x=0-0.12) (A-series) and (ii) materials prepared from gels with Mo/V/Te/Ga atomic ratios of 1/0.60-x/0.17/x (x=0.15 or 0.25) (B-series). In addition, a Ga-containing MoVTeO catalyst was also prepared from M1-containing MoVTeO material by impregnation with aqueous solution of gallium and heat-treated at 450 degrees C in N-2. Catalysts were characterized by means of powder XRD, TEM, Raman spectroscopy, NH3-TPD and XPS and tested in the partial oxidation of propane. The results showed that the addition of small amount of gallium significantly increase the selectivity to acrylic acid (AA) at low propane conversion. However, at high propane conversion, the selectivity to AA strongly depends on both the catalyst composition and the gallium incorporation method. The higher selectivity to acrylic acid over Ga-containing MoVTeO catalysts has been related to: (i) structural changes in the M1 phase by the incorporation of Ga3+ into the octahedral structural framework and/or (ii) incorporation of Ga3+ species on the catalyst surface thus modifying catalysts acid properties. (C) 2014 Elsevier B.V. All rights reserved.Financial support from DGICYT in Spain (Project CTQ2012-37925-C03-1 and Program Severo Ochoa SEV-2012-0267) is gratefully acknowledged. EGG acknowledges finantial support through spanish project MAT2010-19837-C06-05 and the ICTS-Microscopia Electronica in Madrid for facilities.Hern谩ndez Morejudo, S.; Mass贸 Ram铆rez, A.; Garc铆a-Gonz谩lez, E.; Concepci贸n Heydorn, P.; L贸pez Nieto, JM. (2015). Preparation, characterization and catalytic behavior for propanepartial oxidation of Ga-promoted MoVTeO catalysts. Applied Catalysis A: General. 504:51-61. https://doi.org/10.1016/j.apcata.2014.12.039S516150

    Anatomical evidence for direct connections between the shell and core subregions of the rat nucleus accumbens

    No full text
    The nucleus accumbens is thought to subserve different aspects of adaptive and emotional behaviors. The anatomical substrates for such actions are multiple, parallel ventral striatopallidal output circuits originating in the nucleus accumbens shell and core subregions. Several indirect ways of interaction between the two subregions and their associated circuitry have been proposed, in particular through striato-pallido-thalamic and dopaminergic pathways. In this study, using anterograde neuroanatomical tracing with Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine as well as single-cell juxtacellular filling with neurobiotin, we investigated the intra-accumbens distribution of local axon collaterals for the identification of possible direct connections between the shell and core subregions. Our results show widespread intra-accumbens projection patterns, including reciprocal projections between specific parts of the shell and core. However, fibers originating in the core reach more distant areas of the shell, including the rostral pole (i.e. the calbindin-poor part of the shell anterior to the core) and striatal parts of the olfactory tubercle, than those arising in the shell and projecting to the core. The latter projections are more restricted to the border region between the shell and core. The density of the fiber labeling within both the shell and core was very similar. Moreover, specific intrinsic projections within shell and core were identified, including a relatively strong projection from the rostral pole to the rostral shell, reciprocal projections between the rostral and caudal shell, as well as projections within the core that have a caudal-to-rostral predominance. The results of the juxtacellular filling experiments show that medium-sized spiny projection neurons and medium-sized aspiny neurons (most likely fast-spiking) contribute to these intra-accumbens projections. While such neurons are GABAergic, the intrastriatal projection patterns indicate the existence of lateral inhibitory interactions within, as well as between, shell and core subregions of the nucleus accumbens
    corecore