51 research outputs found

    Optique et guidage des faisceaux

    No full text

    Statistical simulations of machine errors for LINAC4

    Get PDF
    LINAC 4 is a normal conducting H- linac proposed at CERN to provide a higher proton flux to the CERN accelerator chain. It should replace the existing LINAC 2 as injector to the Proton Synchrotron Booster and can also operate in the future as the front end of the SPL, a 3.5 GeV Superconductingg Proton Linac. LINAC 4 consists of a Radio-Frequency Quadrupole, a chopper line, a Drift Tube Linac (DTL) and a Cell Coupled DTL all operating at 352 MHz and finally a Side Coupled Linac at 704 MHz. Beam dynamics was studied and optimized performing end-to-end simulations. This paper presents statistical simulations of machine errors which were performed in order to validate the proposed design

    Beam dynamics studies in SPIRAL II LINAC

    Get PDF
    ACCInternational audienceThe proposed LINAG driver for the SPIRAL 2 project aims to accelerate a 5-mA D+ beam up to 20 A.MeV and 1-mA beam for q/A=1/3 up to 14.5 A.MeV. It is acontinuous wave regime (cw), designed for maximum efficiency in the transmission of intense beams. It consists of an injector (two ECR sources + a Radio Frequency Quadrupole) followed by a superconducting section based on an array of independently phased cavities. This paper presents beams dynamics studies associated to the LINAG driver. End-to-end simulations (low-energy beam lines, RFQ, medium-energy beam line, SC linac) are shown

    Theoretical study and experimental result of the RF coupler prototypes of Spiral2

    Get PDF
    JACoW web site THPCH160International audienceSpiral2 is a 40 MeV-5mA deuterons and a 14.5 MeV/u-1mA heavy ions superconducting linac under construction at GANIL. The RF couplers have to provide 12 kW CW power to the cavities at 88 MHz for an accelerating field of 6.5 MV/m. Two solutions corresponding to two different technologies have been designed and two prototypes have been built. We present the technical proposals ans issues as well as the results (manufacturing, test at low and high power, multipacting...) leading to the final choice

    The GUINEVERE Project for Accelerator Driven System Physics

    No full text
    paper 9414International audienceThe GUINEVERE project is part of the EUROTRANS Integrated Project of the 6th EURATOM Framework Programme. It is mainly devoted to ADS on-line reactivity monitoring validation, sub-criticality determination and operational procedures (loading, start-up, shut-down, ...) as a follow-up of the MUSE experiments. The project consists in coupling a fast lead core, set-up in the VENUS reactor at SCK*CEN Mol (B), with a GENEPI neutron source under construction by CNRS. To accommodate the accelerator in a vertical coupling configuration, the VENUS building is being heightened. The fast core will be loaded with enriched Uranium and will be moderated and reflected with solid lead (zero power experiment). For the purpose of the experimental programme, the neutron source has to be operated not only in pulsed mode but also in continuous mode to investigate the current-to-flux reactivity indicator in representative conditions of a powerful ADS. In this latter mode it is also required to make short beam interruptions to have access to the neutron population decrease as a function of time: from this spectrum it will be possible to apply different analysis techniques such as "prompt decay" fitting techniques and "source jerk" techniques. Beam interruptions will be repeated at a programmable frequency to improve time spectra statistics. Different sub-criticality levels (keff=0.99, 0.97, 0.95, ...) will be investigated in order to obtain a full set of data points for the final overall validation of the methodology. This paper describes the status of the experimental facility assembling, and the foreseen experimental programme to be started

    Petits rappels de physique

    No full text
    National audienc

    ETOILE : The hadrontherapy project for Lyon (France)

    No full text
    corecore