695 research outputs found
Kentucky Bluegrass Response to Potassium and Nitrogen Fertilization
The response of Kentucky bluegrass (Poa pratensis L.) to potassium (K) fertilization has been inconsistent. The objective of this research was to determine the effects of K fertilization across varying nitrogen (N) rates and clipping management on Kentucky bluegrass clipping yields, quality, tissue K concentrations, apparent N recovery, and N use efficiency. A 2 x 4 x 4 factorial was arranged in a splitplot design and repeated across two years. Main plots were clipping treatments (returned vs. removed) and subplots were N rates (0, 98, 196, and 294 kg ha(-1) yr(-1)) in combination with K rates (0, 81, 162, and 243 kg ha(-1) yr(-1)). There was no positive effect of K on clipping yields and quality even though soil extractable K levels tested low. Higher K rates, however, increased N recovery and use efficiency for all but the highest N rate. Tissue K response to K fertilization was nonlinear. Yield and quality responses were not correlated to tissue K concentration. Nonexchangeable K levels were high in the native soil, and may have provided an additional source of K for bluegrass. The results suggest that extractable K values alone may not adequately predict available K to Kentucky bluegrass in this sandy loam soil
Charged Randall-Sundrum black holes and N=4 super Yang-Mills in AdS(2)xS(2)
We obtain some exact results for black holes in the Randall-Sundrum model
with a single brane. We consider an extreme black hole charged with respect to
a Maxwell field on the brane. The near-horizon geometry is determined. The
induced metric on the brane and the black hole entropy are compared with the
predictions of 4d General Relativity. There is good agreement for large black
holes, with calculable subleading corrections. As a separate application, the
bulk solution provides a gravitational dual for (strongly coupled, large N) N=4
SYM in AdS(2)xS(2) for arbitrary relative size of AdS(2) and S(2).Comment: 13 page
Searching for the Kaluza-Klein Graviton in Bulk RS Models
The best-studied version of the RS1 model has all the Standard Model
particles confined to the TeV brane. However, recent variants have the Standard
Model fermions and gauge bosons located in the bulk five-dimensional spacetime.
We study the potential reach of the LHC in searching for the lightest KK
partner of the graviton in the most promising such models in which the
right-handed top is localized very near the TeV brane and the light fermions
are localized near the Planck brane. We consider both detection and the
establishment of the spin-2 nature of the resonance should it be found.Comment: 17 pages, 6 figures - JHEP published version, figures added,
branching ratio correcte
A study of smoke formation from wood combustion
Aerosol time of flight mass spectrometry (ATOFMS) was used to analyse the particles emitted during the flaming and smouldering phases of the combustion of samples of hard and soft woods. Eugenol and furfural were also burned and using results from previous work of the authors, they have been shown to be useful proxies for initial wood combustion products. The ratios of elementary carbon to total carbon in the particles were similar for both the woods and for eugenol. The ATOFMS spectra of most of the particles were consistent with the presence of soot precursor constituents along with oxygen containing fragments. Most particle diameters were less than 2.5. ÎĽm, with the greatest concentration of <. 0.12. ÎĽm
A single bacterial genus maintains root growth in a complex microbiome
Plants grow within a complex web of species that interact with each other and with the plant1–10. These interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development7–9,11–18. Here, to understand how interactions between microorganisms influence root growth in Arabidopsis, we established a model system for interactions between plants, microorganisms and the environment. We inoculated seedlings with a 185-member bacterial synthetic community, manipulated the abiotic environment and measured bacterial colonization of the plant. This enabled us to classify the synthetic community into four modules of co-occurring strains. We deconstructed the synthetic community on the basis of these modules, and identified interactions between microorganisms that determine root phenotype. These interactions primarily involve a single bacterial genus (Variovorax), which completely reverses the severe inhibition of root growth that is induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulates plant hormone levels to balance the effects of our ecologically realistic synthetic root community on root growth. We identify an auxin-degradation operon that is conserved in all available genomes of Variovorax and is necessary and sufficient for the reversion of root growth inhibition. Therefore, metabolic signal interference shapes bacteria–plant communication networks and is essential for maintaining the stereotypic developmental programme of the root. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising ecological strategy for developing more resilient and productive crops
The Effective Field Theory of Inflation
We study the effective field theory of inflation, i.e. the most general
theory describing the fluctuations around a quasi de Sitter background, in the
case of single field models. The scalar mode can be eaten by the metric by
going to unitary gauge. In this gauge, the most general theory is built with
the lowest dimension operators invariant under spatial diffeomorphisms, like
g^{00} and K_{mu nu}, the extrinsic curvature of constant time surfaces. This
approach allows us to characterize all the possible high energy corrections to
simple slow-roll inflation, whose sizes are constrained by experiments. Also,
it describes in a common language all single field models, including those with
a small speed of sound and Ghost Inflation, and it makes explicit the
implications of having a quasi de Sitter background. The non-linear realization
of time diffeomorphisms forces correlation among different observables, like a
reduced speed of sound and an enhanced level of non-Gaussianity.Comment: 26 pages. v2: minor corrections, JHEP published versio
Signatures of Primordial non-Gaussianities in the Matter Power-Spectrum and Bispectrum: the Time-RG Approach
We apply the time-renormalization group approach to study the effect of
primordial non-Gaussianities in the non-linear evolution of cosmological dark
matter density perturbations. This method improves the standard perturbation
approach by solving renormalization group-like equations governing the dynamics
of gravitational instability. The primordial bispectra constructed from the
dark matter density contrast and the velocity fields represent initial
conditions for the renormalization group flow. We consider local, equilateral
and folded shapes for the initial non-Gaussianity and analyze as well the case
in which the non-linear parameter f_{NL} parametrizing the strength of the
non-Gaussianity depends on the momenta in Fourier space through a power-law
relation, the so-called running non-Gaussianity. For the local model of
non-Gaussianity we compare our findings for the power-spectrum with those of
recent N-body simulations and find that they accurately fit the N-body data up
to wave-numbers k \sim 0.25 h/Mpc at z=0. We also present predictions for the
(reduced) matter bispectra for the various shapes of non-Gaussianity.Comment: 27 pages, 12 figures. Results and discussion for a particular case
added. One figure and one reference added. Matches with the version accepted
for publication in the JCAP
KK Parity in Warped Extra Dimension
We construct models with a Kaluza-Klein (KK) parity in a five- dimensional
warped geometry, in an attempt to address the little hierarchy problem present
in setups with bulk Standard Model fields. The lightest KK particle (LKP) is
stable and can play the role of dark matter. We consider the possibilities of
gluing two identical slices of 5D AdS in either the UV (IR-UV-IR model) or the
IR region (UV-IR-UV model) and discuss the model-building issues as well as
phenomenological properties in both cases. In particular, we find that the
UV-IR-UV model is not gravitationally stable and that additional mechanisms
might be required in the IR-UV-IR model in order to address flavor issues.
Collider signals of the warped KK parity are different from either the
conventional warped extra dimension without KK parity, in which the new
particles are not necessarily pair-produced, or the KK parity in flat universal
extra dimensions, where each KK level is nearly degenerate in mass. Dark matter
and collider properties of a TeV mass KK Z gauge boson as the LKP are
discussed.Comment: 35 pages, 11 figure
The Plant Microbiome: From Ecology to Reductionism and beyond
Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plant microbiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments
- …