1,476 research outputs found

    Mining Dynamic Document Spaces with Massively Parallel Embedded Processors

    Get PDF
    Currently Océ investigates future document management services. One of these services is accessing dynamic document spaces, i.e. improving the access to document spaces which are frequently updated (like newsgroups). This process is rather computational intensive. This paper describes the research conducted on software development for massively parallel processors. A prototype has been built which processes streams of information from specified newsgroups and transforms them into personal information maps. Although this technology does speed up the training part compared to a general purpose processor implementation, however, its real benefits emerges with larger problem dimensions because of the scalable approach. It is recommended to improve on quality of the map as well as on visualisation and to better profile the performance of the other parts of the pipeline, i.e. feature extraction and visualisation

    Observation of Magnetic Moments in the Superconducting State of YBa2_2Cu3_3O6.6_{6.6}

    Get PDF
    Neutron Scattering measurements for YBa2_2Cu3_3O6.6_{6.6} have identified small magnetic moments that increase in strength as the temperature is reduced below T∗T^\ast and further increase below TcT_c. An analysis of the data shows the moments are antiferromagnetic between the Cu-O planes with a correlation length of longer than 195 \AA in the aa-bb plane and about 35 \AA along the c-axis. The origin of the moments is unknown, and their properties are discusssed both in terms of Cu spin magnetism and orbital bond currents.Comment: 9 pages, and 4 figure

    Magnetic Order in YBa2_2Cu3_3O6+x_{6+x} Superconductors

    Get PDF
    Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa2_2Cu3_3O6+x_{6+x} superconductors. Most of the measurements were made on a high quality crystal of YBa2_2Cu3_3O6.6_{6.6}. It is shown that this crystal has highly ordered ortho-II chain order, and a sharp superconducting transition. Inelastic scattering measurements display a very clean spin-gap and pseudogap with any intensity at 10 meV being 50 times smaller than the resonance intensity. The crystal shows a complicated magnetic order that appears to have three components. A magnetic phase is found at high temperatures that seems to stem from an impurity with a moment that is in the aa-bb plane, but disordered on the crystal lattice. A second ordering occurs near the pseudogap temperature that has a shorter correlation length than the high temperature phase and a moment direction that is at least partly along the c-axis of the crystal. Its moment direction, temperature dependence, and Bragg intensities suggest that it may stem from orbital ordering of the dd-density wave (DDW) type. An additional intensity increase occurs below the superconducting transition. The magnetic intensity in these phases does not change noticeably in a 7 Tesla magnetic field aligned approximately along the c-axis. Searches for magnetic order in YBa2_2Cu3_3O7_{7} show no signal while a small magnetic intensity is found in YBa2_2Cu3_3O6.45_{6.45} that is consistent with c-axis directed magnetic order. The results are contrasted with other recent neutron measurements.Comment: 11 pages with 10 figure

    Oscillating magnetoresistance in diluted magnetic semiconductor barrier structures

    Full text link
    Ballistic spin polarized transport through diluted magnetic semiconductor (DMS) single and double barrier structures is investigated theoretically using a two-component model. The tunneling magnetoresistance (TMR) of the system exhibits oscillating behavior when the magnetic field are varied. An interesting beat pattern in the TMR and spin polarization is found for different NMS/DMS double barrier structures which arises from an interplay between the spin-up and spin-down electron channels which are splitted by the s-d exchange interaction.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    Magnetic Coherence in Cuprate Superconductors

    Full text link
    Recent inelastic neutron scattering (INS) experiments on La2−x_{2-x}Srx_xCuO4_4 observed a {\it magnetic coherence effect}, i.e., strong frequency and momentum dependent changes of the spin susceptibility, χâ€Čâ€Č\chi'', in the superconducting phase. We show that this effect is a direct consequence of changes in the damping of incommensurate antiferromagnetic spin fluctuations due to the appearance of a d-wave gap in the fermionic spectrum. Our theoretical results provide a quantitative explanation for the weak momentum dependence of the observed spin-gap. Moreover, we predict {\bf (a)} a Fermi surface in La2−x_{2-x}Srx_xCuO4_4 which is closed around (π,π)(\pi,\pi) up to optimal doping, and {\bf (b)} similar changes in χâ€Čâ€Č\chi'' for all cuprates with an incommensurate magnetic response.Comment: 5 pages, 4 figures, Fig.3 is in colo

    Hopping Conduction in Disordered Carbon Nanotubes

    Full text link
    We report electrical transport measurements on individual disordered carbon nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template. In both as-grown and annealed types of nanotubes, the low-field conductance shows as exp[-(T_{0}/T)^{1/2}] dependence on temperature T, suggesting that hopping conduction is the dominant transport mechanism, albeit with different disorder-related coefficients T_{0}. The field dependence of low-temperature conductance behaves an exp[-(xi_{0}/xi)^{1/2}] with high electric field xi at sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit weak positive magnetoresistance at low T = 1.7 K. Comparison with theory indicates that our data are best explained by Coulomb-gap variable range hopping conduction and permits the extraction of disorder-dependent localization length and dielectric constant.Comment: 10 pages, 5 figure

    BPS R-balls in N=4 SYM on R X S^3, Quantum Hall Analogy and AdS/CFT Holography

    Get PDF
    In this paper, we propose a new approach to study the BPS dynamics in N=4 supersymmetric U(N) Yang-Mills theory on R X S^3, in order to better understand the emergence of gravity in the gauge theory. Our approach is based on supersymmetric, space-filling Q-balls with R-charge, which we call R-balls. The usual collective coordinate method for non-topological scalar solitons is applied to quantize the half and quarter BPS R-balls. In each case, a different quantization method is also applied to confirm the results from the collective coordinate quantization. For finite N, the half BPS R-balls with a U(1) R-charge have a moduli space which, upon quantization, results in the states of a quantum Hall droplet with filling factor one. These states are known to correspond to the ``sources'' in the Lin-Lunin-Maldacena geometries in IIB supergravity. For large N, we find a new class of quarter BPS R-balls with a non-commutativity parameter. Quantization on the moduli space of such R-balls gives rise to a non-commutative Chern-Simons matrix mechanics, which is known to describe a fractional quantum Hall system. In view of AdS/CFT holography, this demonstrates a profound connection of emergent quantum gravity with non-commutative geometry, of which the quantum Hall effect is a special case.Comment: 42 pages, 2 figures; v3: a new paragraph on counting unbroken susy of NC R-balls and references adde

    On the positive mass theorem for manifolds with corners

    Full text link
    We study the positive mass theorem for certain non-smooth metrics following P. Miao's work. Our approach is to smooth the metric using the Ricci flow. As well as improving some previous results on the behaviour of the ADM mass under the Ricci flow, we extend the analysis of the zero mass case to higher dimensions.Comment: 21 pages, incorporated referee's comment

    X-Ray-Diffraction Study of Charge-Density-Waves and Oxygen-Ordering in YBa2Cu3O6+x Superconductor

    Full text link
    We report a temperature-dependent increase below 300 K of diffuse superlattice peaks corresponding to q_0 =(~2/5,0,0) in an under-doped YBa_2Cu_3O_6+x superconductor (x~0.63). These peaks reveal strong c-axis correlations involving the CuO_2 bilayers, show a non-uniform increase below \~220 K with a plateau for ~100-160 K, and appear to saturate in the superconducting phase. We interpret this unconventional T-dependence of the ``oxygen-ordering'' peaks as a manifestation of a charge density wave in the CuO_2 planes coupled to the oxygen-vacancy ordering.Comment: 4 pages, 4 figure

    WIMPs search by scintillators: possible strategy for annual modulation search with large-mass highly-radiopure NaI(Tl)

    Get PDF
    The DAMA experiments are running deep underground in the Gran Sasso National Laboratory. Several interesting results have been achieved so far. Here a maximum likelihood method to search for the WIMP annual modulation signature is discussed and applied to a set of preliminary test data collected with large mass highly radiopure NaI(Tl) detectors. Various related technical arguments are briefly addressed.Comment: 6 pages, 4 figures, LaTex. Contributed paper to TAUP97; to appear in the Proceeding
    • 

    corecore