5 research outputs found

    Analysis of a General Family of Regularized Navier-Stokes and MHD Models

    Get PDF
    We consider a general family of regularized Navier-Stokes and Magnetohydrodynamics (MHD) models on n-dimensional smooth compact Riemannian manifolds with or without boundary, with n greater than or equal to 2. This family captures most of the specific regularized models that have been proposed and analyzed in the literature, including the Navier-Stokes equations, the Navier-Stokes-alpha model, the Leray-alpha model, the Modified Leray-alpha model, the Simplified Bardina model, the Navier-Stokes-Voight model, the Navier-Stokes-alpha-like models, and certain MHD models, in addition to representing a larger 3-parameter family of models not previously analyzed. We give a unified analysis of the entire three-parameter family using only abstract mapping properties of the principle dissipation and smoothing operators, and then use specific parameterizations to obtain the sharpest results. We first establish existence and regularity results, and under appropriate assumptions show uniqueness and stability. We then establish results for singular perturbations, including the inviscid and alpha limits. Next we show existence of a global attractor for the general model, and give estimates for its dimension. We finish by establishing some results on determining operators for subfamilies of dissipative and non-dissipative models. In addition to establishing a number of results for all models in this general family, the framework recovers most of the previous results on existence, regularity, uniqueness, stability, attractor existence and dimension, and determining operators for well-known members of this family.Comment: 37 pages; references added, minor typos corrected, minor changes to revise for publicatio

    Analysis of segregated boundary-domain integral equations for BVPs with non-smooth coefficients on Lipschitz domains

    Get PDF
    Segregated direct boundary-domain integral equations (BDIEs) based on a parametrix and associated with the Dirichlet and Neumann boundary value problems for the linear stationary diffusion partial differential equation with a variable Hölder-continuous coefficients on Lipschitz domains are formulated. The PDE right-hand sides belong to the Sobolev (Bessel potential) space Hs−2(Ω ) or H˜s−2(Ω ) , 12<s<32, when neither strong classical nor weak canonical co-normal derivatives are well defined. Equivalence of the BDIEs to the original BVP, BDIE solvability, solution uniqueness/non-uniqueness, and the Fredholm property and invertibility of the BDIE operators are analysed in appropriate Sobolev spaces. It is shown that the BDIE operators for the Neumann BVP are not invertible; however, some finite-dimensional perturbations are constructed leading to invertibility of the perturbed (stabilised) operators.EPSR

    Low frequency radar design trade-offs

    No full text
    Communication to : 3rd ONERA-DLR aerospace symposium, Paris (France), 20-22 juin 2001SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : 22419, issue : 2001 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore