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Abstract
Segregated direct boundary-domain integral equations (BDIEs) based on a
parametrix and associated with the Dirichlet and Neumann boundary value problems
for the linear stationary diffusion partial differential equation with a variable
Hölder-continuous coefficients on Lipschitz domains are formulated. The PDE
right-hand sides belong to the Sobolev (Bessel potential) space Hs–2(�) or˜Hs–2(�),
1
2 < s < 3

2 , when neither strong classical nor weak canonical co-normal derivatives are
well defined. Equivalence of the BDIEs to the original BVP, BDIE solvability, solution
uniqueness/non-uniqueness, and the Fredholm property and invertibility of the BDIE
operators are analysed in appropriate Sobolev spaces. It is shown that the BDIE
operators for the Neumann BVP are not invertible; however, some finite-dimensional
perturbations are constructed leading to invertibility of the perturbed (stabilised)
operators.
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1 Introduction
Many applications in science and engineering can be modelled by boundary-value prob-
lems (BVPs) for partial differential equations with variable coefficients. Reduction of the
BVPs with arbitrarily variable coefficients to explicit boundary integral equations is usu-
ally not possible, since the fundamental solution needed for such reduction is generally
not available in an analytical form (except for some special dependence of the coefficients
on coordinates). Using a parametrix (Levi function) introduced in [20, 25] as a substi-
tute of a fundamental solution, it is possible however to reduce such a BVP to a system
of boundary-domain integral equations, BDIEs, (see e.g. [38, Sect. 18], [43, 44], where the
Dirichlet, Neumann, and Robin problems for some PDEs were reduced to indirect BDIEs).
However, many questions about their equivalence to the original BVP, solvability, solution
uniqueness, and invertibility of corresponding integral operators remained open for rather
long time.

In [3, 5, 6, 8, 30], the 3D mixed (Dirichlet–Neumann) boundary value problem (BVP) for
the stationary diffusion PDE with infinitely smooth variable coefficient on a domain with an
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infinitely smooth boundary and a square-integrable right-hand side was reduced to either
segregated or united direct boundary-domain integral or integro-differential equations,
some of which coincide with those formulated in [29]. Such BVPs appear, for example, in
electrostatics, stationary heat transfer, and other diffusion problems for inhomogeneous
media.

For a function from the Sobolev space Hs(�), 1
2 < s < 3

2 , a classical co-normal derivative
in the sense of traces may not exist. However, the generalised co-normal derivative can be
defined in the weak sense, associated with the first Green identity and with an extension
of the corresponding second-order PDE right-hand side to ˜Hs–2(�) (see [27, Lemma 4.3],
[31, Definition 3.1]). Since the extension is non-unique, the co-normal derivative operator
appears to be also non-unique and non-linear in u unless a linear relation between u and
the PDE right-hand side extension is enforced. This creates some difficulties in formulat-
ing the boundary-domain integral equations.

These difficulties are addressed in this paper presenting formulation and analysis of di-
rect segregated BDIE systems equivalent to the Dirichlet and Neumann boundary value
problems, on Lipschitz domains, for the divergent-type PDE with a non-smooth Hölder–
Lipschitz variable scalar coefficient and a general right-hand side from Hs–2(�), extended
when necessary to ˜Hs–2(�). This needed a non-trivial generalisation of the third Green
identity and its co-normal derivative for such functions, which essentially extends the ap-
proach implemented in [3, 5, 6, 8, 30] for the right-hand side from L2(�), with smooth
coefficient and smooth domain boundary. Equivalence of the BDIEs to the original BVP,
BDIE solvability, solution uniqueness/non-uniqueness, and the Fredholm properties and
invertibility of the BDIE operators are analysed in the Sobolev (Bessel potential) spaces. It
is shown that the BDIE operators for the Neumann BVP are not invertible, and appropriate
finite-dimensional perturbations are constructed leading to invertibility of the perturbed
(stabilised) operators. Some preliminary results in this direction for the infinitely smooth
coefficient and domains were presented in [33].

Note that our analysis is mainly aimed not at the boundary-value problems, the proper-
ties of which are well known nowadays, but rather at the BDIE systems per se. The analysis
is interesting not only in its own rights but is also to be used further on for analysis of con-
vergence and stability of BDIE-based numerical methods for PDEs; see, for example, [16,
29, 34, 35, 46–48, 52, 53].

2 Spaces, co-normal derivatives and boundary value problems
Let � = �+ be a bounded open n-dimensional region of Rn, n ≥ 3, and let �– = R

n \ �+

denote the corresponding exterior domain. For simplicity, we assume that their common
boundary ∂� is a simply connected closed Lipschitz surface. Let �0 denote �+, �– or Rn.

In what follows, D(�0) := C∞
comp(�0) and D(�0) := {r�0 g : g ∈ D(Rn)}. Here and fur-

ther on, r�0 denotes the restriction operator on �0; we will also use the equivalent
notation g|�0 := r�0 g . Further, Hs(�0) = Hs

2(�0) and Hs(∂�) = Hs
2(∂�) are the Bessel

potential spaces, where s is a real number (see, e.g., [18, 26, 27]). We recall that Hs

coincide with the Sobolev–Slobodetski spaces W s
2 for non-negative s. By ˜Hs(�0) we

denote the closure of D(�0) in Hs(Rn). It is a subspace of Hs(Rn), and for Lipschitz
domains, ˜Hs(�0) = {g : g ∈ Hs(Rn), supp g ⊂ �0}. By Hs(�0) and ˜Hs•(�0) we denote
the spaces of restrictions on �0 of distributions from Hs(Rn) and ˜Hs(�0), respec-
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tively:

Hs(�0) :=
{

r�0 g : g ∈ Hs(
R

n)},

˜Hs
•(�0) := r�0

˜Hs(�0) :=
{

r�0 g : g ∈ ˜Hs(�0)
} ⊂ Hs(�0),

endowed by the corresponding infimum norms and the Hilbert structure defined with the
help of orthogonal projections; see [27, p. 77] for Hs(�0). Note that the space ˜Hs•(�0)
coincides with the one denoted as Lp

s,z(�0) in [41, Eq. (5.2)] and [40, Eq. (2.212)] for
p = 2.

Let us introduce the subspace Hs
∂�0

:= {g : g ∈ Hs(Rn), supp g ⊂ ∂�0} of Hs(Rn) (and of
˜Hs(�0)). By H̊s(�0) we denote the closure of D(�0) in Hs(�0).

Definition 2.1 Let E̊�0 denote the operator of extension of functions g ∈ Hs(�0), s ≥ 0,
to the whole Rn by zero outside �0. By, e.g., [27, Lemma 3.32 and Theorem 3.33] (see also
[31, Theorem 2.7]) the operator E̊�0 : Hs(�0) → ˜Hs(�0) is continuous if 0 ≤ s < 1

2 , and
we extend it also to the range – 1

2 < s < 1
2 defining it for – 1

2 < s < 0 as (cf. the proof of [31,
Theorem 2.16])

〈E̊�0 g, v〉�0 := 〈g, E̊�0 v〉�0 , ∀ g ∈ Hs(�), ∀ v ∈ H–s(�). (2.1)

Remark 2.2 Note the following known or easily deduced results:
1. There hold the continuous embeddings ˜Hs•(�0) ↪→ H̊s(�0) ↪→ Hs(�0); see [42,

Eq. (2.123)].
2. ˜Hs•(�0) = H̊s(�0) for any s > 1/2 such that s – 1

2 is non-integer; see, e.g., [27,
Theorem 3.3].

3. H̊s(�0) = Hs(�0) for any s ≤ 1/2; see [31, Theorem 2.12].
4. ˜Hs•(�0) = H̊s(�0) = Hs(�0) for any s < 1/2 such that s – 1

2 is non-integer; see, e.g.,
[31, Lemma 2.15].

5. For any s ∈R, there evidently exists an extension from ˜Hs•(�0) to ˜Hs(�0), and for
any s ≥ –1/2, this extension is unique; see, e.g., [27, Lemma 3.39], [31,
Theorem 2.10(i)].

6. By [31, Theorem 2.16], for any s ∈ (–1/2, 1/2), the extension from
˜Hs•(�0) = H̊s(�0) = Hs(�0) to ˜Hs(�0) is unique and is given by the operator E̊�0 .

Remark 2.3 Due to Remark 2.2(5), for s ≥ –1/2, the space ˜Hs•(�0) is isometrically iso-
morphic to the space ˜Hs(�0), and sometimes these spaces are identified. Particularly,
if g1, g2 ∈ ˜Hs•(�0), then denoting by g̃1, g̃2 ∈ ˜Hs(�0) the unique distributions such that
gi = r�0 g̃i in �0, we have ‖gi‖˜Hs•(�0) = ‖g̃i‖˜Hs(�0) and (g1, g2)

˜Hs•(�0) = (g̃1, g̃2)
˜Hs(�0). Moreover, if

s ∈ (–1/2, 1/2), then by Remark 2.2(6), g̃i = E̊�0 gi hence implying ‖gi‖˜Hs•(�0) = ‖E̊�0 gi‖˜Hs(�0).
There is no such isomorphism for s < –1/2 since in such a case the extension from

˜Hs•(�0) to ˜Hs(�0) is not unique. However, due to the definition of the spaces, there is still
an isometric isomorphism between the space ˜Hs•(�0) and the quotient space ˜Hs(�0)/Hs

∂�0
.

Definition of the space ˜Hs•(�0), Remark 2.2, and Remark 2.3 imply the following asser-
tion.
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Corollary 2.4 The following restriction operators are isomorphisms:

r�0 : ˜Hs(�0) → ˜Hs
•(�0), –

1
2

≤ s, (2.2)

r�0 : ˜Hs(�0) → Hs(�0) = ˜Hs
•(�0), –

1
2

< s <
1
2

, (2.3)

r�0 : ˜Hs(�0)/Hs
∂�0 → ˜Hs

•(�0), s < –
1
2

. (2.4)

The inverse to the operator (2.3) is r–1
�0

= E̊�0 ; see Definition 2.1.

Definition 2.5 For a non-negative integer m and 0 < θ ≤ 1, let Cm,θ (�0) denote the
Hölder–Lipschitz space in the closed domain �0. Similar to [32, Definition 3.1], g ∈
Cμ

+ (�0) for μ ≥ 0 means that
g ∈ L∞(�0) when μ = 0;
g ∈ Cμ–1,1(�0) when μ is a positive integer;
g ∈ Cm,θ+ε(�0) for some ε > 0 when μ = m + θ , where m is a non-negative integer, and
0 < θ < 1.

Employing this definition, Theorem 7.2 from Sect. 7 can be reformulated as follows.

Theorem 2.6 Let �0 be an open set in R
n, σ ∈ R, v ∈ Hσ (�0), and g ∈ C|σ |

+ (�0). Then g
is a multiplier in Hσ (�0), i.e., gv ∈ Hσ (�0) for every v ∈ Hσ (�0), and the corresponding
norm estimate holds.

Let us denote ∂j := ∂xj := ∂/∂xj (j = 1, 2, . . . , n), ∇ = (∂1, ∂2, . . . , ∂n). Let

0 < amin ≤ a(x) ≤ amax < ∞ for almost every x ∈ �±. (2.5)

We consider the scalar elliptic differential equation, which can be written in the following
strong form if u and a are sufficiently smooth:

Au(x) := A(x,∇)u(x) := ∇ · (a(x)∇u(x)
)

= f (x), x ∈ �±, (2.6)

where u is an unknown function and f is a given function in �±.
For u ∈ Hs(�±), 1/2 < s < 3/2, and a ∈ C|s–1|

+ (�±), the partial differential operator A is
understood in the sense of distributions:

〈Au, v〉�± := –E�± (u, v), ∀v ∈D(�±), (2.7)

where

E�± (u, v) := 〈a∇u,∇v〉�± :=
n

∑

i=1

〈a∂iu, ∂iv〉�± ,

and the duality brackets 〈g, ·〉�± denote value of a linear functional (distribution) g extend-
ing the usual L2 dual product. If s = 1, then

E�± (u, v) =
∫

�±
a(x)∇u(x) · ∇v(x) dx.
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Since the set D(�±) is dense in ˜H2–s(�±), (2.7) defines, due to Theorem 2.6 (see, e.g.,
[32, Theorem 3.4]), the continuous linear operator A : Hs(�±) → Hs–2(�±) = [˜H2–s(�±)]∗,
where

〈Au, v〉�± := –E�± (u, v), ∀ u ∈ Hs(�±), v ∈ ˜H2–s(�±). (2.8)

Let us also consider the operator Ǎ�± : Hs(�±) → ˜Hs–2(�±) = [H2–s(�±)]∗ (see [31,
Eq. (3.5)], [32, Eq. (5.1)]) defined by

〈Ǎ�±u, v〉�± := –Ě�± (u, v) := –
〈

E̊�± (a∇u),∇v
〉

�±

= –
〈

E̊�± (a∇u),∇ve
〉

Rn =
〈∇ · E̊�± (a∇u), ve

〉

Rn

=
〈∇ · E̊�± (a∇u), v

〉

�± , ∀ u ∈ Hs(�±), v ∈ H2–s(�±), (2.9)

which is evidently continuous. Here ve ∈ H2–s(Rn) is such that r�±ve = v. Evidently, weak
definition (2.9) can be also written (in the strong-looking form) as

Ǎ�±u = ∇ · E̊�±r�± [a∇u]. (2.10)

For any u ∈ Hs(�±), the functional Ǎ�±u belongs to ˜Hs–2(�±) and is a specific extension
of the functional Au ∈ Hs–2(�±); recall that the functional Au ∈ Hs–2(�±) is defined on
˜H2–s(�±), whereas the functional Ǎ�±u is defined on H2–s(�±).

Remark 2.7 Note also that Definition 2.1 for E̊�± and definition (2.9) imply that

〈Ǎ�±u, v〉�± = –Ě�± (u, v) = –Ě�± (v, u) = 〈u, Ǎ�±v〉�± ,

∀ u ∈ Hs(�±), v ∈ H2–s(�±), 1/2 < s < 3/2.

From the trace theorem (see, e.g., [11, 12, 26, 27]) for u ∈ Hs(�±), 1/2 < s < 3/2, it follows
that γ ±u ∈ Hs– 1

2 (∂�), where γ ± = γ ±
∂� is the trace operator on ∂� from �±. If γ +u = γ –u,

then we will sometimes write just γ u. Let also γ –1 := γ –1
r : Hs– 1

2 (∂�) → Hs(Rn) denote
a (non-unique) continuous right inverse to the trace operator γ , i.e., γ γ –1w = w for any
w ∈ Hs– 1

2 (∂�). Hence also γ ±γ –1w = w for any w ∈ Hs– 1
2 (∂�).

For u ∈ Hs(�±), s > 3
2 , and a ∈ C(�±), we denote by Tc± the corresponding classical

(strong) co-normal derivative operators on ∂� in the sense of traces:

Tc±u(x) := a(x)ν(x) · γ ±∇u(x) = a(x)∂νu(x), x ∈ ∂�, (2.11)

where ν(x) = ν+(x) is the outward to �+ unit normal vector at the point x ∈ ∂�, and we will
sometimes write Tcu(x) if Tc+u(x) = Tc–u(x). However, the classical co-normal derivative
is, generally, not well defined if u ∈ Hs(�±), 1/2 < s < 3/2, (see an example in [33, Ap-
pendix A] of a function from H1(�), where the classical normal derivative does not exist
at boundary points).

Inspired by the first Green identity for smooth functions, we can define the generalised
co-normal derivative (cf., e.g., [27, Lemma 4.3]), [31, Definition 3.1], [32, Definition 5.2]).
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Definition 2.8 Let 1/2 < s < 3/2, u ∈ Hs(�±), a ∈ C|s–1|
+ (�±), and r�±Au = r�± f̃± for some

f̃± ∈ ˜Hs–2(�±). Then the generalised co-normal derivatives T±(f̃±; u) ∈ Hs– 3
2 (∂�) are de-

fined in the weak form as

±〈

T±(f̃±; u), w
〉

∂�
:=

〈

f̃±,γ –1w
〉

�± + Ě�±
(

u,γ –1w
)

=
〈

f̃± – Ǎ�±u,γ –1w
〉

�± , ∀ w ∈ H
3
2 –s(∂�), (2.12)

i.e.,

T±(f̃±, u) := ±(

γ –1)∗(f̃± – Ǎ�±u). (2.13)

If a ≡ 1, then A = 
, and T±(f̃±; u) become generalised normal derivatives denoted as
T±


 (f̃±; u).

The operator (γ –1)∗ : H–t(Rn) → H–t+ 1
2 (∂�) is dual to γ –1 : Ht– 1

2 (∂�) → Ht(Rn) and is
defined as 〈(γ –1)∗ψ , w〉∂� := 〈ψ ,γ –1w〉Rn for any w ∈ Ht– 1

2 , ψ ∈ H–t(Rn), 1/2 < t < 3/2. In
(2.13) it was employed for t = 2 – s.

Theorem 2.9 (Lemma 4.3 in [27], Theorem 3.2 in [31], and Theorem 5.3 in [32]) Un-
der the hypotheses of Definition 2.8, the generalised co-normal derivatives T±u(f̃±; u) are
independent of (non-unique) choice of the operator γ –1, and we have the estimate

∥

∥T±(f̃±; u)
∥

∥

Hs– 3
2 (∂�)

≤ C1‖u‖Hs(�±) + C2‖f̃±‖
˜Hs–2(�±) (2.14)

and the first Green identity in the form

±〈

T±(f̃±; u),γ ±v
〉

∂�
= 〈f̃±, v〉�± + Ě�± (u, v)

= 〈f̃± – Ǎ�±u, v〉�± , ∀ v ∈ H2–s(�±). (2.15)

As follows from Definition 2.8, the generalized co-normal derivative is nonlinear with re-
spect to u for fixed f̃± but still linear with respect to the couple (f̃±, u), i.e., for any complex
numbers α1 and α2,

α1T±(f̃1±; u1) + α2T+(f̃2±; u2) = T±(α1 f̃1±;α1u1) + T±(α2 f̃2±;α2u2)

= T±(α1 f̃1± + α2 f̃2±;α1u1 + α2u2).

Let us also define some subspaces of Hs(�±); see [11, 15, 31, 32].

Definition 2.10 Let s ∈R, and let A∗ : Hs(�±) →D∗(�±) be a linear operator. For t ∈R,
we introduce the space

Hs,t(�±; A∗) :=
{

g : g ∈ Hs(�±), A∗g ∈ ˜Ht
•(�±)

}

endowed with the norm ‖g‖Hs,t (�± ;A∗) := (‖g‖2
Hs(�±) + ‖A∗g‖2

˜Ht•(�±))
1/2 and the correspond-

ing inner product.
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Definition 2.11 Let �0 be either �+ or �–. By Remark 2.3, if g ∈ Hs,t(�0; A∗) for some
s ∈ R and t ≥ – 1

2 , then there exists a unique distribution f̃ ∈ ˜Ht(�0) such that r�0 f̃ = A∗g ,
and hence f̃ = Ã∗�0 g , where Ã∗�0 := r–1

�0
A∗. The operator Ã∗�0 : Hs,t(�0; A∗) → ˜Ht(�0),

which is continuous by Corollary 2.4, is called the canonical extension of the operator
A∗ : Hs,t(�0; A∗) → ˜Ht•(�0), and moreover, if – 1

2 < t < 1
2 , then Ã∗�0 = E̊�0 A∗.

We will mostly use the operators A or 
 as A∗ in the definition. Note that since Au =
a
u + ∇a · ∇u, for 1/2 < s < 3/2, we have Hs,– 1

2 (�0; A) = Hs,– 1
2 (�0;
) if a ∈ C

3
2

+ (�0), with
equivalent norms.

Let us now define the canonical conormal derivative; see [32, Definition 6.5].

Definition 2.12 For u ∈ Hs,– 1
2 (�±; A) and a ∈ C|s–1|

+ (�±), 1/2 < s < 3/2, we define the
canonical co-normal derivatives T±u ∈ Hs– 3

2 (∂�) as

±〈

T±u, w
〉

∂�
:=

〈

Ã�±u,γ –1w
〉

�± + Ě�±
(

u,γ –1w
)

=
〈

Ã�±u – Ǎ�±u,γ –1w
〉

�±

=
〈(

γ –1)∗(Ã�±u – Ǎ�±u), w
〉

∂�
∀ w ∈ H

3
2 –s(∂�), (2.16)

i.e,

T±u := ±(

γ –1)∗(Ã�±u – Ǎ�±u). (2.17)

If a ≡ 1, then T±u becomes the canonical normal derivative denoted as T±

 u.

Theorem 2.13 (Theorem 3.9 in [31] and Theorem 6.6 in [32]) Under the hypotheses of
Definition 2.12, the canonical co-normal derivatives T±u are independent of (non-unique)
choice of the operator γ –1, the operators T± : Hs,– 1

2 (�±; A) → Hs– 3
2 (∂�) are continuous,

and the first Green identity holds in the form

±〈

T±u,γ ±v
〉

∂�
= 〈Ã�±u, v〉�± + Ě�± (u, v)

= 〈Ã�±u – Ǎ�±u, v〉�± , ∀ v ∈ H2–s(�±). (2.18)

The canonical co-normal derivatives in Definition 2.12 are completely defined by the func-
tion u and operator A only and do not depend explicitly on the right-hand sides f̃±, un-
like the generalised co-normal derivatives defined in (2.15), whereas the operators T± are
linear in u. Note that the canonical co-normal derivatives coincide with the classical co-
normal derivatives T±u = Tc±u if the latter do exist (see [32, Corollaries 6.11 and 6.14]),
which is generally not the case for the generalised conormal derivatives even for smooth
functions u, unless f̃± = Ã�±u is chosen. Thus the canonical conormal derivative is a con-
tinuous extension of the classical conormal derivative.

Let 1/2 < s < 3/2 and a ∈ C|s–1|
+ (�±). If u ∈ Hs,– 1

2 (�±; A), then Definitions 2.8 and 2.12
imply that the generalised co-normal derivative for arbitrary extensions f̃± ∈ ˜Hs–2(�±) of
the distributions r�±Au can be expressed as

T±(f̃±; u) = T±u ± (

γ –1)∗(f̃± – Ã�±u). (2.19)
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If u ∈ Hs(�±) and v ∈ H2–s,– 1
2 (�±; A), then swapping over the roles of u and v in (2.18),

we obtain the first Green identity for v:

±〈

T±v,γ ±u
〉

∂�
= Ě�± (v, u) + 〈Ã�±v, u〉�± . (2.20)

If, in addition, r�±Au = r�± f̃±, where f̃± ∈ ˜Hs–2(�±), then subtracting (2.20) from (2.15)
and taking into account that Ě�± (u, v) = Ě�± (v, u) by Remark 2.7, we obtain the following
second Green identity:

〈f̃±, v〉�± – 〈Ã�±v, u〉�± = ±〈

T±(f̃±; u),γ ±v
〉

∂�
∓ 〈

T±v,γ ±u
〉

∂�
.

If, finally, u ∈ Hs,– 1
2 (�±; A) and v ∈ H2–s,– 1

2 (�±; A), then we arrive at the familiar form of
the second Green identity for the canonical extension Ã of the operator A and the canon-
ical co-normal derivatives

〈Ã�±u, v〉�± – 〈Ã�±v, u〉�± = ±〈

T±u,γ ±v
〉

∂�
∓ 〈

T±v,γ ±u
〉

∂�
. (2.21)

3 Parametrix and potential type operators on Lipschitz domains
Recall that unless stated otherwise, we will assume that � = �+.

We will say that a function P(x, y) of two variables x, y ∈ R
n is a parametrix (the Levi

function) for the operator A(x, ∂x) in R
n if (see, e.g., [19, 20, 25, 29, 38, 43, 44])

A(x,∇x)P(x, y) = δ(x – y) + R(x, y), (3.1)

where δ(·) is the Dirac distribution, and R(x, y) possesses a weak (integrable) singularity at
x = y, i.e.,

R(x, y) = O
(|x – y|–κ)

with κ < n. (3.2)

Let ωn = 2πn/2

�(n/2) denote the area of the unit sphere in R
n. It is well known that the function

P
(x, y) =
–1

(n – 2)ωn|x – y|n–2 , x, y ∈R
n, (3.3)

is the fundamental solution of the Laplace equation, i.e., 
xP
(x, y) = 
yP
(x, y) = δ(x – y).
It is easy to see that for the operator A(x, ∂x) given by the left-hand side in (2.6), the

function

P(x, y) =
1

a(y)
P
(x, y) =

–1
(n – 2)ωna(y)|x – y|n–2 , x, y ∈R

n, (3.4)

is a parametrix, whereas the corresponding remainder function is

R(x, y) = ∇a(x) · ∇xP(x, y) =
1

a(y)
∇a(x) · ∇xP
(x, y)

=
(x – y) · ∇a(x)
ωna(y)|x – y|n , x, y ∈R

n, (3.5)
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and if a ∈ C1
+(Rn), then it satisfies estimate (3.2) a.e. with κ = n – 1. Note also that

A(y,∇y)P(x, y) = δ(x – y) + R∗(x, y), (3.6)

where

R∗(x, y) = –∇y · (P(x, y)∇a(y)
)

=

(ln a(y))

(n – 2)ωn|x – y|n–2 –
(x – y) · ∇a(y)
ωna(y)|x – y|n , x, y ∈R

n. (3.7)

Evidently, the parametrix P(x, y) given by (3.4) is related to the fundamental solution to
the operator A(y,∇x) := a(y)
x with “frozen” coefficient a(y), and A(y,∇x)P(x, y) = δ(x – y).

Note that parametrix (3.4) and remainders (3.5) and (3.7) are not smooth enough for the
corresponding potential operators to be directly treated as in [27], which thus need some
additional consideration.

For g ∈ D(Rn) and sufficiently smooth coefficient a, the parametrix-based volume po-
tential operator and the remainder potential operator corresponding to parametrix (3.4)
and remainders (3.5) and (3.7) for y ∈R

n are

Pg(y) :=
〈

P(·, y), g
〉

Rn =
∫

Rn
P(x, y)g(x) dx, (3.8)

Rg(y) :=
〈

R(·, y), g
〉

Rn =
∫

Rn
R(x, y)g(x) dx, (3.9)

R∗g(y) :=
〈

R∗(·, y), g
〉

Rn =
∫

Rn
R∗(x, y)g(x) dx, (3.10)

and from (3.1)–(3.10) we obtain,

PAg = g + Rg, APg = g + R∗g in R
n. (3.11)

For the function g defined on a domain �+ ⊂ R
n, e.g., g ∈ D(�+), the corresponding

potentials for y ∈ �+ are

Pg(y) :=
〈

P(·, y), g
〉

�+
=

∫

�+

P(x, y)g(x) dx, (3.12)

Rg(y) :=
〈

R(·, y), g
〉

�+
=

∫

�+

R(x, y)g(x) dx, (3.13)

R∗g(y) :=
〈

R∗(·, y), g
〉

�+
=

∫

�+

R∗(x, y)g(x) dx. (3.14)

From definitions (3.4), (3.5), and (3.7) we can obtain representations of the parametrix-
based potential operators in terms of their counterparts for a = 1 (i.e., associated with the
Laplace operator 
; see, e.g., [21]), which we equip with the subscript 
 (see [3]):

Pg =
1
a

P
g, Rg = –
1
a
∇ · P
(g∇a), R∗g = –∇ ·

(∇a
a

P
g
)

, (3.15)

Pg =
1
a
P
g, Rg = –

1
a
∇ ·P
(g∇a), R∗g = –∇ ·

(∇a
a

P
g
)

. (3.16)
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Hence


(aPg) = g in R
n, 
(aPg) = g in �. (3.17)

Employing relations (3.16) and the well-known properties of the operator P
 as the
pseudo-differential operator of order –2 together with Theorem 2.6, definitions (3.8)–
(3.10) can be extended to g ∈ Hs(Rn), g ∈ ˜Hs(�) and lower-smoothness coefficient a. For
g ∈ ˜Hs(�) and g ∈ Hs(�), the potentials P , R, R∗ defined on functions (or distributions)
having support on � are understood as

Pg := r�Pg, Rg := r�Rg, R∗g := r�R∗g, g ∈ ˜Hs(�), s ∈R; (3.18)

Pg := r�PE̊�g, Rg := r�RE̊�g, R∗g := r�R∗E̊�g, g ∈ Hs(�), s > –
1
2

. (3.19)

To prove mapping properties of the parametrix-based volume potential operators in
Sobolev spaces, we first provide some well-known results for the classical Newtonian vol-
ume potential associated with the Laplace operator.

Lemma 3.1 Let � be a bounded Lipschitz domain in R
n. The following operators are con-

tinuous:

μP
 : Hs–2(
R

n) → Hs(
R

n), s ∈R, ∀ μ ∈D
(

R
n); (3.20)

P
 : ˜Hs–2(�) → Hs(�), s ∈ R; (3.21)

P
 : Hs–2(�) → Hs(�),
3
2

< s <
5
2

; (3.22)

P
 : ˜Hs–2(�) → Hs,– 1
2 (�;
), s ≥ 3

2
; (3.23)

γ +P
 : ˜Hs–2(�) → Hs– 1
2 (∂�),

1
2

< s <
3
2

; (3.24)

γ +P
 : Hs(�) → H1(∂�), –
1
2

< s; (3.25)

T+

P
 : ˜Hs(�) → L2(∂�), –

1
2

< s; (3.26)

T+

P
 : Hs(�) → L2(∂�), –

1
2

< s. (3.27)

If 1
2 < s < 3

2 , f̃ ∈ ˜Hs–2(�), and f̃0 ∈ ˜Hs–2(�) is such that r� f̃0 = r� f̃ , then there exist constants
C0, C1 > 0 such that

∥

∥T+

(f̃0;P
 f̃ )

∥

∥

Hs– 3
2 (∂�)

≤ C1‖f̃ ‖
˜Hs–2(�) + C2‖f̃0‖˜Hs–2(�). (3.28)

Proof Operator (3.20) and hence (3.21) are continuous since P
 is a pseudo-differential
operator of order –2. The continuity of operator (3.22) follows from the first relation in
(3.19) for P
 and P
 and from (3.21). Since 
P
g = g in �, the continuity of operator
(3.21) implies that of operator (3.23).
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The continuity of operator (3.24) is implied by that of operator (3.21) and the trace the-
orem for Lipschitz domains; see, e.g., [11, Lemma 3.6] and [27, Theorem 3.38]. The con-
tinuity of operator (3.25) follows from that of operator (3.22) and from, e.g., [54], [31,
Lemma 2.5] for – 1

2 < s < 1
2 , and then by the embedding argument for s ≥ 1

2 .
The continuity of operators (3.26) and (3.27) is implied by that of (3.21) and (3.22), re-

spectively, and by [31, Corollary 3.14] since s + 2 > 3
2 in both cases. Estimate (3.28) follows

from the continuity of operator (3.21), relation 
P
 f̃ = f̃ , and estimate (2.14). �

Now the following mapping properties of the parametrix-based operators can be ob-
tained.

Theorem 3.2 Let � be a bounded Lipschitz domain in R
n. The following operators are

continuous:

μP : Hs–2(
R

n) → Hs(
R

n), s ∈R, a ∈ C|s|
+

(

R
n), ∀ μ ∈D

(

R
n); (3.29)

P : ˜Hs–2(�) → Hs(�), s ∈R, a ∈ C|s|
+ (�); (3.30)

P : Hs–2(�) → Hs(�),
3
2

< s <
5
2

, a ∈ Cs
+(�); (3.31)

P : ˜Hs–2(�) → Hs,– 1
2 (�; A),

3
2

≤ s, a ∈ Cs
+(�); (3.32)

μR : Hs–1(
R

n) → Hs(
R

n), s ∈ R, a ∈ C|s–1|+1
+

(

R
n), ∀ μ ∈D

(

R
n); (3.33)

R : Hs–1(�) → Hs(�),
1
2

< s <
3
2

, a ∈ C|s–1|+1
+ (�); (3.34)

R : Hs(�) → Hs(�),
1
2

< s <
3
2

, a ∈ Cs
+(�); (3.35)

R : Hs(�) → Hs,– 1
2 (�; A),

1
2

< s <
3
2

, a ∈ C
3
2

+ (�); (3.36)

μR∗ : Hs(
R

n) → Hs+1(
R

n), s ∈R, a ∈ C|s+2|+1
+

(

R
n), ∀ μ ∈D

(

R
n); (3.37)

R∗ : ˜Hs(�) → Hs+1(�), s ∈ R, a ∈ C|s+2|+1
+ (�); (3.38)

R∗ : ˜Hs(�) → Hσ (�), –
3
2

< s, a ∈ C
3
2

+ (�), for some σ > –
1
2

; (3.39)

γ +P : ˜Hs–2(�) → Hs– 1
2 (∂�),

1
2

< s <
3
2

, a ∈ Cs
+(�); (3.40)

γ +P : Hs(�) → H1(∂�), –
1
2

< s, a ∈ C
3
2

+ (�); (3.41)

γ +R : Hs(�) → Hs– 1
2 (∂�),

1
2

< s <
3
2

, a ∈ Cs
+(�); (3.42)

T+P : ˜Hs(�) → L2(∂�), –
1
2

< s, a ∈ C
3
2

+ (�); (3.43)

T+P : Hs(�) → L2(∂�), –
1
2

< s, a ∈ C
3
2

+ (�); (3.44)

T+R : Hs(�) → Hs– 3
2 (∂�),

1
2

< s <
3
2

, a ∈ C
3
2

+ (�). (3.45)

Moreover, operators (3.35), (3.36), (3.42), and (3.45) are compact.
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If 1
2 < s < 3

2 , a ∈ Cs
+(�), f̃ ∈ ˜Hs–2(�), and f̃0 ∈ ˜Hs–2(�) is such that r� f̃0 = r�AP f̃ , then

there exist constants C0, C1 > 0 such that

∥

∥T+(f̃0;P f̃ )
∥

∥

Hs– 3
2 (∂�)

≤ C1‖f̃ ‖
˜Hs–2(�) + C2‖f̃0‖˜Hs–2(�). (3.46)

Proof The continuity of operators (3.29)–(3.31) is implied by the first relations in (3.15)
and (3.16) and by the continuity of operators (3.20)–(3.22) together with Theorem 2.6.

The continuity of operators (3.30) and (3.31) and Remark 2.2(4) imply that of operator
(3.32) for s > 3

2 . Let us now prove (3.32) for s = 3
2 . For g ∈ ˜H– 1

2 (�), we have, Pg ∈ H 3
2 (�)

due to (3.30), whereas

APg = ∇ ·
(

a∇
[

1
a
P
g

])

= g – ∇ · [(∇ ln a)P
g
]

in �, (3.47)

where we have taken into account that 
P
g = g . The first term in the right-hand side of
(3.47) belongs to ˜H– 1

2• (�), whereas the second term belongs to Hσ (�) = ˜Hσ• (�) for some
σ ∈ (–1/2, 1/2) (cf. item 4 in Remark 2.2) since ∇a ∈ C

1
2

+ (�) and a ≥ amin > 0, which com-
pletes the proof of the continuity of operator (3.32).

The continuity of operator (3.33) follows from the second relation in (3.15) together with
Theorem 2.6 and the continuity of operator (3.20). Indeed, let us take arbitrary μ ∈D(Rn),
let Bμ be a ball such that suppμ ⊂ Bμ, and let μ1 ∈D(Rn) be such that μ1 = 1 in Bμ. Then
for any g ∈ Hs–1(Rn), we have

‖μRg‖Hs(Rn) =
∥

∥

∥

∥

μ

a
∇ · (μ1P
(g∇a)

)

∥

∥

∥

∥

Hs(Rn)
≤ c1

∥

∥∇ · (μ1P
(g∇a)
)∥

∥

Hs(Rn)

≤ c2
∥

∥μ1P
(g∇a)
∥

∥

Hs+1(Rn) ≤ c3‖g∇a‖Hs–1(Rn) ≤ c4‖g‖Hs–1(Rn), (3.48)

where ci are positive constants (depending on μ, μ1, and a), and we took into account that
C|s–1|+1

+ (Rn) ⊂ C|s|
+ (Rn) since |s| ≤ |s – 1| + 1.

To prove the continuity of operator (3.34), we similarly employ the second relation in
(3.16) together with Theorem 2.6 and the continuity of operator (3.22). Then we obtain
for any g ∈ Hs–1(�), 1/2 < s < 3/2, and some positive constants ci:

‖Rg‖Hs(�) =
∥

∥

∥

∥

1
a
∇ ·P
(g∇a)

∥

∥

∥

∥

Hs(�)
≤ c1

∥

∥∇ ·P
(g∇a)
∥

∥

Hs(�)

≤ c2
∥

∥P
(g∇a)
∥

∥

Hs+1(�) ≤ c3‖g∇a‖Hs–1(�) ≤ c4‖g‖Hs–1(�). (3.49)

Let us prove the continuity and compactness of operator (3.35). For 1 ≤ s < 3
2 , we have

s = |s – 1| + 1, and then the continuity of operator (3.34) implies the continuity and com-
pactness of (3.35). For 1

2 < s < 1, we need a sharper estimate of the norm ‖g∇a‖Hs–1(�).
First, by Definition 2.5 the inclusion a ∈ Cs

+(�) implies that there exists t ∈ (s, 1) such
that a ∈ C0,t(�) = Bt∞,∞(�) = Ft∞,∞(�); see, e.g., Proposition in [45, Sect. 2.1.2], and hence
∇a ∈ Ft–1∞,∞(�). Then, by Theorems 1 from [45, Sect. 4.4.3] we have

‖g∇a‖Ft–1
2,∞(�) ≤ C‖∇a‖Ft–1∞,∞(�)‖g‖Hσ (�)

≤ C‖a‖C0,t (�)‖g‖Hσ (�), ∀ σ ∈ (1 – t, s). (3.50)
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On the other hand, by (3.49), item (ii) of Proposition from [45, Sect. 2.2.1], and (3.50) we
obtain

‖Rg‖Hs(�) ≤ c3‖g∇a‖Hs–1(�) = c3‖g∇a‖Fs–1
2,2 (�)

≤ C1‖g∇a‖Ft–1
2,∞(�) ≤ C1C‖a‖C0,t (�)‖g‖Hσ (�).

Thus the operator R : Hσ (�) → Hs(�) is continuous, which implies the continuity and,
by the Rellich compact embedding theorem, also the compactness of operator (3.35) for
1
2 < s < 1.

Let us prove the continuity of operator (3.36). Since a ∈ C
3
2

+ (�), by Definition 2.5 there
exists ε > 0 such that a ∈ C1, 1

2 +ε(�), and let us choose any σ ∈ ( 1
2 , min{s, 1

2 + ε}). By the
continuity of (3.34) the operator R : Hσ (�) → Hs(�) is continuous. Now let us prove
that the operator AR : Hσ (�) → ˜H– 1

2• (�) is continuous as well. Indeed, for some positive
constants ci, we have

‖ARg‖
˜H

– 1
2• (�)

≤ ‖ARg‖
˜Hσ–1• (�)

≤ c0‖ARg‖Hσ–1(�)

= c0

∥

∥

∥

∥

∇ ·
[

a∇
(

1
a
∇ ·P
(g∇a)

)]∥

∥

∥

∥

Hσ–1(�)

= c0
∥

∥–∇ · [(∇ ln a)∇ ·P
(g∇a)
]

+ 

(∇ ·P
(g∇a)

)∥

∥

Hσ–1(�)

≤ c1
∥

∥–(∇ ln a)∇ ·P
(g∇a) + (g∇a)
∥

∥

Hσ (�)

≤ c2‖a‖
C1, 1

2 +ε

∥

∥P
(g∇a)
∥

∥

Hσ+1(�) + c1‖g∇a‖Hσ (�)

≤ c3‖g∇a‖Hσ–1(�) + c1‖g∇a‖Hσ (�) ≤ c4‖g∇a‖Hσ (�)

≤ c5‖a‖
C1, 1

2 +ε ‖g‖Hσ (�).

Hence we proved the continuity of the operator Hσ (�) → Hs,– 1
2 (�; A), which implies that

of operator (3.36) and by the Rellich compact embedding theorem also its compactness.
The continuity of operator (3.37) is implied by the last relation in (3.15), the continuity of

operator (3.20), and Theorem 2.6 in the chain of inequalities analogous to (3.48). Similarly,
the continuity of operator (3.38) is implied by the last relation in (3.16), the continuity of
operator (3.21), and Theorem 2.6. The continuity of operator (3.39) is implied by that of
(3.38) since a ∈ C

3
2

+ (�) implies that there exists ε > 0 such that a ∈ C1,1/2+ε(�), and we can
take σ ∈ ( 3

2 , min{s + 1, 3
2 + ε}).

The continuity of operator (3.40) is implied by that of operator (3.30) and the trace theo-
rem for Lipschitz domains; see, e.g., [11, Lemma 3.6], [27, Theorem 3.38]. The continuity
of operator (3.41) for – 1

2 < s < – 1
2 + ε with any sufficiently small ε > 0 follows from that

of operator (3.31) together with, e.g., [54], [31, Lemma 2.5] and then by the embedding
argument for all s > – 1

2 . Similarly, the continuity of operators (3.43) and (3.44) is implied
by that of (3.30) and (3.31), respectively, and by [31, Corollary 3.14] since s + 2 > 3

2 in the
both cases.
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The continuity and compactness of operators (3.42) and (3.45) are implied by those of
operators (3.35) and (3.36), the trace theorem for Lipschitz domains, and Theorem 2.9.

Estimate (3.46) follows from the continuity of operator (3.30) and estimate (2.14). �

The parametrix-based single- and double-layer surface potential operators are defined
as

Vg(y) := –
∫

∂�

P(x, y)ψ(x) dSx, y /∈ ∂�, (3.51)

Wg(y) := –
∫

∂�

[

Tc(x, n(x), ∂x
)

P(x, y)
]

ϕ(x) dSx, y /∈ ∂�, (3.52)

where the integrals are understood as duality forms if ψ and ϕ are not integrable. Partic-
ularly, for ψ ∈ H 1

2 –s(∂�) and ϕ ∈ H 1
2 –s(∂�), 1

2 < s < 3
2 , we have

Vψ(y) := –
〈

γ P(·, y),ψ
〉

∂�
= –

〈

P(·, y),γ ∗ψ
〉

Rn

= – Pγ ∗ψ(y) = –
1

a(y)
P
γ ∗ψ(y), (3.53)

Wϕ(y) := –
〈

TcP(·, y),ϕ
〉

∂�
= –

〈

P(·, y), Tc∗ϕ
〉

Rn

= – PTc∗ϕ(y) = –
1

a(y)
P
Tc∗ϕ(y), (3.54)

where γ ∗ψ and Tc∗ϕ are well defined for any ψ ∈ H–1(∂�), ϕ ∈ L2(∂�), and a ∈ L∞(∂�),
in the sense of distributions, as

〈

γ ∗ψ ,φ
〉

Rn := 〈ψ ,γφ〉∂�, ∀ φ ∈D
(

R
n), and

〈

Tc∗ϕ,φ
〉

Rn :=
〈

ϕ, Tcφ
〉

∂�
=

〈

ϕ, aTc

φ

〉

∂�
, ∀ φ ∈D

(

R
n),

which evidently implies that suppγ ∗ψ ⊂ ∂� and supp Tc∗ϕ ⊂ ∂�. Moreover,

γ ∗ : H
1
2 –s(∂�) → H–s

∂�, Tc∗ : H
1
2 –s(∂�) → H–s–1

∂� ,
1
2

< s <
3
2

, (3.55)

are the continuous operators adjoint, respectively, to the continuous trace operator γ :
Hs

loc(Rn) → Hs– 1
2 (∂�) and to the continuous classical conormal derivative operator Tc :

Hs+1
loc (Rn) → Hs– 1

2 (∂�); for the continuity of Tc and Tc∗, it is also assumed that a ∈
Cs– 1

2
+ (∂�).
When a = 1, formulas (3.51) and (3.52) define the corresponding harmonic potentials,

which we denote as V
 and W
, respectively. From definitions (3.51) and (3.52), similar
to (3.15)–(3.16), we have (cf. [3])

Vg =
1
a

V
g, Wg =
1
a

W
(ag). (3.56)

Hence


(aVg) = 0, 
(aWg) = 0 in �±. (3.57)
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We will mainly need the restrictions of the layer potentials to �, i.e., r�V and r�W , but
will often omit the restriction operator r� if this is clear from the context.

The mapping properties and jump relations for the single- and double-layer potentials
are well known for the case a = const and were extended to the case of infinitely smooth
boundary and variable coefficient a(x) in [3, 5]. Before proving the corresponding prop-
erties for the parametrix-based potentials on Lipschitz domains, we further collect the
following well-known mapping and jump properties for the harmonic potentials on Lips-
chitz domains.

Theorem 3.3 Let � be a bounded Lipschitz domain in R
n.

(i) If 1
2 ≤ s ≤ 3

2 , then the following operators are continuous for any μ ∈D(Rn):

μV
 : Hs– 3
2 (∂�) → Hs(

R
n), (3.58)

r�W
 : Hs– 1
2 (∂�) → Hs(�), μr�– W
 : Hs– 1

2 (∂�) → Hs(�–). (3.59)

(ii) If 1
2 < s < 3

2 , then the following operators are continuous:

γ ±V
 : Hs– 3
2 (∂�) → Hs– 1

2 (∂�), γ ±W
 : Hs– 1
2 (∂�) → Hs– 1

2 (∂�), (3.60)

T±

 V
 : Hs– 3

2 (∂�) → Hs– 3
2 (∂�), T±


 W
 : Hs– 1
2 (∂�) → Hs– 3

2 (∂�), (3.61)

(iii) If 1
2 < s < 3

2 , then, for any ϕ ∈ Hs– 1
2 (∂�) and ψ ∈ Hs– 3

2 (∂�), the following jump
properties hold:

γ +V
ψ – γ –V
ψ = 0, γ +W
ϕ – γ –W
ϕ = –ϕ, (3.62)

T+

V
ψ – T–


V
ψ = ψ , T+

W
ϕ – T–


W
ϕ = 0. (3.63)

Proof Items (i) and (ii) follow, e.g., from [11, Theorem 1(i,ii) and Remark], [22–24, 51] (see
also [27, Theorem 6.12]) if we take into account that the canonical co-normal derivative
operators in (3.61) are well defined since 
V = 0 and 
W = 0 in �±. The jump properties
of item (iii) for s = 1 are implied, e.g., by [11, Lemma 4.1]; see also [27, Theorem 6.11].
Hence they evidently hold if 1 ≤ s < 3

2 and by the density argument also if 1
2 < s < 1. �

Theorem 3.3 implies the following assertion.

Corollary 3.4 Let ∂� be a compact Lipschitz boundary, and let 1
2 < s < 3

2 . The following
operators are continuous:

V
 := γ +V
 = γ –V
 : Hs– 3
2 (∂�) → Hs– 1

2 (∂�), (3.64)

W
 :=
1
2
(

γ +W
 + γ –W


)

: Hs– 1
2 (∂�) → Hs– 1

2 (∂�), (3.65)

W ′

 :=

1
2
(

T+

V
 + T–


V


)

: Hs– 3
2 (∂�) → Hs– 3

2 (∂�), (3.66)

L
 := T+

W
 = T–


W
 : Hs– 1
2 (∂�) → Hs– 3

2 (∂�). (3.67)
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Employing relations (3.56), Theorem 3.3, and Theorem 2.6, we obtain the following
mapping properties for the parametrix-based potentials on Lipschitz domains.

Theorem 3.5 Let � be a bounded Lipschitz domain.
(i) The following operators are continuous if 1

2 ≤ s ≤ 3
2 ,

μV : Hs– 3
2 (∂�) → Hs(

R
n), a ∈ Cs

+
(

R
n),∀ μ ∈D

(

R
n); (3.68)

r�W : Hs– 1
2 (∂�) → Hs(�), a ∈ Cs

+(�); (3.69)

μr�– W : Hs– 1
2 (∂�) → Hs(�–), a ∈ Cs

+(�–),∀ μ ∈D
(

R
n). (3.70)

(ii) The following operators are continuous if 1
2 < s ≤ 3

2 and a ∈ C
3
2

+ (�):

r�V : Hs– 3
2 (∂�) → Hs,– 1

2 (�; A); (3.71)

μr�– V : Hs– 3
2 (∂�) → Hs,– 1

2
loc (�–; A), ∀ μ ∈D

(

R
n); (3.72)

r�W : Hs– 1
2 (∂�) → Hs,– 1

2 (�; A); (3.73)

μr�– W : Hs– 1
2 (∂�) → Hs,– 1

2 (�–; A), ∀ μ ∈D
(

R
n). (3.74)

(iii) The following operators are continuous if 1
2 < s < 3

2 :

γ ±V : Hs– 3
2 (∂�) → Hs– 1

2 (∂�), a ∈ Cs
+(�±); (3.75)

γ ±W : Hs– 1
2 (∂�) → Hs– 1

2 (∂�), a ∈ Cs
+(�±); (3.76)

T±V : Hs– 3
2 (∂�) → Hs– 3

2 (∂�), a ∈ C
3
2

+ (�±); (3.77)

T±W : Hs– 1
2 (∂�) → Hs– 3

2 (∂�), a ∈ C
3
2

+ (�±). (3.78)

Proof Relations (3.56), Theorem 3.3(i), and Theorem 2.6 immediately imply the continuity
of operators (3.68) and (3.69). Further, if a ∈ C

3
2

+ (�), then there exists ε > 0 such that a ∈
C1, 1

2 +ε(�). For 1
2 < s ≤ 3

2 , g ∈ Hs– 3
2 (�), and any σ ∈ ( 1

2 , min{s, 1
2 + ε}), we have

‖AVg‖Hσ–1(�) =
∥

∥

∥

∥

∇ ·
(

a∇
[

1
a

V
g
])∥

∥

∥

∥

Hσ–1(�)
=

∥

∥∇ · [(∇ ln a)V
g
]∥

∥

Hσ–1(�)

≤ ∥

∥(∇ ln a)V
g
∥

∥

Hσ ≤ C‖a‖
C1, 1

2 +ε (�)
‖V
g‖Hσ (�)

≤ C‖a‖
C1, 1

2 +ε (�)
‖V
g‖Hs(�),

where we have taken into account that 
V
g = 0 in �. Hence, along with continuity
of operator in (3.58), this implies AVg ∈ Hσ–1(�) and thus, by Remark 2.2(4), r�AVg ∈
˜Hσ–1• (�) ⊂ ˜H– 1

2• (�) with the corresponding norm estimate, from which the continuity of
operator (3.71) follows. The continuity of operator (3.73) is proved in a similar fashion.

The continuity of operators (3.70), (3.72), and (3.74) immediately follows from the con-
tinuity of their counterparts for the interior domain.
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The continuity of operators (3.75) and (3.76) for the potential traces is implied by the
continuity of operators (3.68)–(3.70) and the trace theorem, whereas the continuity of op-
erators (3.77) and (3.78) for the potential co-normal derivatives is implied by the continuity
of operators (3.71)–(3.74) and Theorem 2.9. �

Now we can prove the jump properties for the parametrix-based potentials on Lipschitz
domains.

Theorem 3.6 Let ∂� be a compact Lipschitz boundary, 1
2 < s < 3

2 , ϕ ∈ Hs– 1
2 (∂�), and ψ ∈

Hs– 3
2 (∂�). Then

γ +Vψ – γ –Vψ = 0, γ +Wϕ – γ –Wϕ = –ϕ, if a ∈ Cs
+
(

R
n); (3.79)

T+Vψ – T–Vψ = ψ , T+Wϕ – T–Wϕ = (∂νa)ϕ, if a ∈ C
3
2

+
(

R
n). (3.80)

Proof Relations (3.56) and (3.62) along with Theorem 2.6 immediately imply jump rela-
tions (3.79).

To prove the first jump relation in (3.80), we generalise to the parametrix-based poten-
tials the arguments from the proof of Lemma 4.1 in [11]. Let ψ ∈ Hs– 3

2 (∂�). From (3.53)
we obtain, in the sense of distributions,

AVψ = –A
(

1
a

P
γ ∗ψ
)

= –γ ∗ψ + ∇ ·
(∇a

a
P
γ ∗ψ

)

= –γ ∗ψ – ∇ · ((∇a)Vψ
)

in R
n, (3.81)

where we have taken into account that 
P
γ ∗ψ = γ ∗ψ . Then, since the operator A is
formally self-adjoint, for any test function φ ∈D(Rn), we obtain

∫

Rn
Vψ(y)Aφ(y) dy = 〈AVψ ,φ〉Rn = –〈ψ ,γφ〉∂� –

〈∇ · ((∇a)Vψ
)

,φ
〉

Rn . (3.82)

Note that, for a ∈ C
3
2

+ (Rn) and ψ ∈ Hs– 3
2 (∂�) with 1

2 < s < 3
2 , the continuity of operator

(3.68) and Theorem 2.6 imply that Vψ ∈ Hs
loc(Rn) and (∇a)Vψ ∈ H

1
2 +ε

loc (Rn) for some ε ∈
(0, 1). Hence, from the second Green identity (2.21) with v = Vψ and u = φ, along with
(3.81), we have

∫

�±
Vψ(y)Aφ(y) dy – 〈Ã�±Vψ ,φ〉�±

=
∫

�±
Vψ(y)Aφ(y) dy – 〈E̊�±r�±AVψ ,φ〉�±

=
∫

�±
Vψ(y)Aφ(y) dy +

〈

E̊�±r�±∇ · ((∇a)Vψ
)

,φ
〉

�±

= ±〈

T±φ,γ ±Vψ
〉

∂�
∓ 〈

T±Vψ ,γ ±φ
〉

∂�
. (3.83)

Here we employed that r�±γ ∗ψ = 0 since suppγ ∗ψ ⊂ ∂�. Let us take into account
that γ +φ = γ –φ = γφ and T+φ = T–φ = Tcφ due to smoothness of φ, whereas γ +Vψ =
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γ –Vψ = γ Vψ by the first relation in (3.79). Moreover, we also have

〈

E̊�±r�±∇ · ((∇a)Vψ
)

,φ
〉

�± =
〈

r�±∇ · ((∇a)Vψ
)

, E̊�±φ
〉

�±

= ±〈

(∂νa)γ ±Vψ ,γφ
〉

∂�
–

〈

(∇a)Vψ ,∇φ
〉

�± .

Then summing up (3.83) for �+ and �–, we obtain

∫

Rn
Vψ(y)Aφ(y) dy = –

〈

T+Vψ – T–Vψ ,γφ
〉

∂�
+

〈

(∇a)Vψ ,∇φ
〉

Rn . (3.84)

Comparing (3.84) and (3.82), we obtain 〈T+Vψ – T–Vψ ,γφ〉∂� = 〈ψ ,γφ〉∂� for arbitrary
φ ∈D(Rn), which implies the first jump relation in (3.80).

Let us similarly prove the second jump relation in (3.80). Let ϕ ∈ Hs– 1
2 (∂�). From (3.54)

we obtain, in the sense of distributions,

AWϕ = –A
(

1
a

P
Tc∗ϕ
)

= –Tc∗ϕ + ∇ ·
(∇a

a
P
Tc∗ϕ

)

= –Tc∗ϕ – ∇ · ((∇a)Wϕ
)

in R
n, (3.85)

where we have taken into account that 
P
Tc∗ϕ = Tc∗ϕ. Then for any test function φ ∈
D(Rn), we obtain

∫

Rn
Wϕ(y)Aφ(y) dy = 〈AWϕ,φ〉Rn = –

〈

Tc∗ϕ + ∇ · ((∇a)Wϕ
)

,φ
〉

Rn

= –
〈

ϕ, Tcφ
〉

∂�
+

〈

(∇a)Wϕ,∇φ
〉

Rn . (3.86)

Note that for a ∈ C
3
2

+ (Rn) and ϕ ∈ Hs– 1
2 (∂�) with 1

2 < s < 3
2 , the continuity of operators

(3.69) and (3.70) and Theorem 2.6 imply that r�+ Wϕ ∈ Hs(�+), r�– Wϕ ∈ Hs
loc(�–), and

(∇a)r�+ Wϕ ∈ H 1
2 +ε(�+), (∇a)r�– Wϕ ∈ H

1
2 +ε

loc (�–) for some ε ∈ (0, 1). Hence from the sec-
ond Green identity (2.21) for v = Wϕ and u = φ, along with (3.85), we have

∫

�±
Wϕ(y)Aφ(y) dy – 〈Ã�±Wϕ,φ〉�±

=
∫

�±
Wϕ(y)Aφ(y) dy – 〈E̊�±r�±AWϕ,φ〉�±

=
∫

�±
Wϕ(y)Aφ(y) dy +

〈

E̊�±r�±∇ · ((∇a)Wϕ
)

,φ
〉

�±

= ±〈

T±φ,γ ±Wϕ
〉

∂�
∓ 〈

T±Wϕ,γ ±φ
〉

∂�
. (3.87)

Here we employed that r�±Tc∗ϕ = 0 since supp Tc∗ϕ ⊂ ∂�. Let us also take into account
that γ +φ = γ –φ = γφ and T+φ = T–φ = Tcφ due to smoothness of φ, whereas γ +Wϕ –
γ –Wϕ = –ϕ by the second relation in (3.79). Moreover, we also have

〈

E̊�±r�±∇ · ((∇a)Wϕ
)

,φ
〉

�± =
〈

r�±∇ · ((∇a)Wϕ
)

, E̊�±φ
〉

�±

= ±〈

(∂νa)γ ±Wϕ,γφ
〉

∂�
–

〈

(∇a)Wϕ,∇φ
〉

�± .
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Then summing up (3.87) for �+ and �–, we obtain

∫

Rn
Wϕ(y)Aφ(y) dy –

〈

(∂νa)ϕ,γφ
〉

∂�
–

〈

(∇a)Wϕ,∇φ
〉

Rn

= –
〈

Tcφ,ϕ
〉

∂�
–

〈

T+Wϕ – T–Wϕ,γφ
〉

∂�
. (3.88)

Comparing (3.88) and (3.86), we obtain 〈T+Wϕ – T–Wϕ,γφ〉∂� = 〈(∂νa)ϕ,γφ〉∂� for ar-
bitrary φ ∈D(Rn), which implies the second jump relation in (3.80). �

Theorem 3.5(iii) and the first relation in (3.79) imply the following assertion.

Corollary 3.7 Let ∂� be a compact Lipschitz boundary, and let 1
2 < s < 3

2 . The following
operators are continuous:

V := γ +V = γ –V : Hs– 3
2 (∂�) → Hs– 1

2 (∂�), a ∈ Cs
+(�±); (3.89)

W :=
1
2
(

γ +W + γ –W
)

: Hs– 1
2 (∂�) → Hs– 1

2 (∂�), a ∈ Cs
+(�±); (3.90)

W ′ :=
1
2
(

T+V + T–V
)

: Hs– 3
2 (∂�) → Hs– 3

2 (∂�), a ∈ C
3
2

+ (�±); (3.91)

L :=
1
2
(

T+W + T–W
)

: Hs– 1
2 (∂�) → Hs– 3

2 (∂�), a ∈ C
3
2

+ (�±). (3.92)

For the case of smooth boundary, the boundary operators defined in Corollary 3.7 (see
[27, Eq. (7.3)] for the fundamental solution-based potentials on Lipschitz domains) cor-
respond to the boundary integral (pseudo-differential) operators of direct surface values
of the single-layer potential, the double-layer potential W , and the co-normal derivatives
of the single-layer potential W ′ and of the double-layer potential (see [3, Eq. (3.6)-(3.8)])
for the parametrix-based potentials on smooth domains. See also [27, Theorems 7.3, 7.4]
about integral representations on Lipschitz domains of the boundary operators associated
with the layer potentials based on fundamental solutions.

If a = 1, then we equip the operators defined in Corollary 3.7 with subscript 
. Then,
under the hypotheses of Corollary 3.7, we have (see [3, Eq. (3.10)–(3.13)] for the potentials
on smooth domains)

Vg =
1
a
V
g, Wg =

1
a
W
(ag), (3.93)

W ′g = W ′

g –

∂νa
a

V
g, Lg = L
(ag) –
∂νa
a

W
(ag). (3.94)

Indeed, relations (3.93) immediately follow from (3.89), (3.90), and (3.56). Further, T+Vg =
T+( 1

a V
g). Let {vk} ⊂ D(�) be a sequence such that ‖vk – V
g‖
Hs,– 1

2 (�;
)
→ 0 as k → ∞,

which implies that also ‖ 1
a vk – Vg‖

Hs,– 1
2 (�;A)

→ 0 as k → ∞. Then (see [32, Lemma 6.10])

T+Vg = lim
k→∞

Tc
(

1
a

vk

)

= lim
k→∞

aTc



(

1
a

vk

)

= lim
k→∞

(

∂νvk –
∂νa
a

γ +vk

)

= T+

V
g –

∂νa
a

γ +V
g.
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Similarly, T–Vg = T–

V
g – ∂νa

a γ –V
g , which, together with (3.91), implies the first relation
in (3.94). The second relation in (3.94) is proved by similar arguments.

Employing definitions (3.89)–(3.92), the jump properties (3.79)–(3.80) can be re-written
for ψ ∈ Hs– 3

2 (∂�) and ϕ ∈ Hs– 1
2 (∂�) with 1

2 < s < 3
2 as follows:

γ ±Vψ = Vψ , γ ±Wϕ = ∓1
2
ϕ + Wϕ if a ∈ Cs

+
(

R
n); (3.95)

T±Vψ = ±1
2
ψ + W ′ψ , T±Wϕ = ±1

2
(∂νa)ϕ + Lϕ if a ∈ C

3
2

+
(

R
n). (3.96)

4 The third Green identity and integral relations
In this section, we apply some limiting procedures to obtain the parametrix-based third
Green identity.

Theorem 4.1 Let � be a bounded Lipschitz domain, u ∈ Hs(�), 1
2 < s < 3

2 , and a ∈ Cs
+(�).

(i) The following generalised third Green identity holds:

u + Ru + Wγ +u = PǍ�u in �, (4.1)

where, by (2.9) and (2.10),

PǍ�u(y) :=
〈

Ǎ�u, P(·, y)
〉

�
= –Ě�

(

u, P(·, y)
)

= –
〈

E̊�(a∇u),∇P(·, y)
〉

�

=
1

a(y)
∇ ·P
E̊�(a∇u)(y), a.e. y ∈ �, (4.2)

and, particularly, if s = 1, then

PǍ�u(y) = –
∫

�

a(x)∇u(x) · ∇xP(x, y) dx, a.e. y ∈ �. (4.3)

(ii) Moreover, if Au = r� f̃ in �, where f̃ ∈ ˜Hs–2(�), then the generalised third Green
identity takes the form

u + Ru – VT+(f̃ ; u) + Wγ +u = P f̃ in �. (4.4)

Proof (i) Let first u ∈D(�). For y ∈ �, let Bε(y) ⊂ � be a ball centred in y with sufficiently
small radius ε, and let �ε := � \ Bε(y). For any fixed y, evidently, P(·, y) = 1

a(y) P
(·, y) ∈
D(�ε) ⊂ H1,0(A;�ε) and has the coinciding classical and canonical co-normal derivatives
on ∂�ε . Then from the first Green identity (2.20) applied to �ε with v = P(·, y) we obtain

–
〈

T+P(·, y),γ +u
〉

∂Bε (y) –
〈

T+P(·, y),γ +u
〉

∂�
+

〈

R(·, y), u
〉

�ε

= –
〈∇P(·, y), a∇u

〉

�ε
. (4.5)

Since

lim
ε→0

〈

T+P(·, y),γ +u
〉

∂Bε (y)

=
1

a(y)
lim
ε→0

∫

∂Bε (y)

[

∂ν(x)P
(x, y)
]

a(x)γ +u(x) dS(x) = –u(y),
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by passing to the limits as ε → 0 equation (4.5) reduces to the third Green identity (4.1)
for any u ∈ D(�). Taking into account the denseness of D(�) in Hs(�) and the mapping
properties of the volume potentials (3.30) and (3.35) in Theorem 3.2 and of the double-
layer potential (3.69) in Theorem 3.5(i), we obtain that (4.1)–(4.2) also hold for any u ∈
Hs(�) with 1

2 < s < 3
2 in the sense of Hs(�), which also implies (4.3) for s = 1.

(ii) Let {uk} ∈ D(�) be a sequence converging to u in Hs(�). By (4.2), (4.3), and (2.18)
we have

PǍ�uk(y) = – lim
ε→0

∫

�ε

a(x)∇uk(x) · ∇xP(x, y) dx = – lim
ε→0

Ě�ε

(

uk , P(·, y)
)

= lim
ε→0

[∫

�ε

(Ã�uk)(x)P(x, y) dx –
∫

∂Bε (y)
P(x, y)T+uk(x) dS(x)

–
∫

∂�

P(x, y)T+uk(x) dS(x)
]

= PÃ�uk(y) + VT+uk(y). (4.6)

Let now f̃k := ˜Es–2
� r�(Ã�uk – Ǎ�u) + f̃ , where ˜Es–2

� : Hs–2(�) → ˜Hs–2(�) is a (non-unique)
continuous extension operator, which exists by [31, Theorem 2.16]. Since r�Ǎ�u = r� f̃ ,
we obtain r� f̃k = r�Ã�uk = r�Ǎ�uk . Hence

r�Ã�uk – r�Ǎ�u = r�Ǎ�(uk – u) → 0 in Hs–2(�),

and f̃k → f̃ in ˜Hs–2(�) as k → ∞. Then by (4.6), (3.53), and (2.19) we obtain

PǍ�uk = PÃ�uk + VT+uk = PÃ�uk + VT+(f̃k ; uk) – V
(

γ –1)∗(f̃k – Ã�uk)

= PÃ�uk + VT+(f̃k ; uk) + P(f̃k – Ã�uk) = VT+(f̃k ; uk) + P f̃k ,

where we took into account that γ ∗(γ –1)∗(f̃k – Ã�uk) = f̃k – Ã�uk by [31, Corollary 2.11]
since f̃k – Ã�uk ∈ Hs–2

∂� . Passing to the limits as k → ∞, we obtain PǍ�u(y) = P f̃ +
VT+(f̃ ; u), which by substitution into (4.1) gives (4.4). �

For some functions f̃ , � , �, let us consider a more general “indirect” integral relation
associated with (4.4):

u + Ru – V� + W� = P f̃ in �. (4.7)

The following lemma extends Lemma 4.1 from [3], where the corresponding assertion was
proved for f̃ ∈ L2(�), s = 1, a ∈ C∞(�), and the infinitely smooth boundary.

Lemma 4.2 Let 1
2 < s < 3

2 and a ∈ Cs
+(�). Let u ∈ Hs(�), � ∈ Hs– 3

2 (∂�), � ∈ Hs– 1
2 (∂�),

and f̃ ∈ ˜Hs–2(�) satisfy (4.7). Then

Au = r� f̃ in �, (4.8)

V
(

� – T+(f̃ ; u)
)

– W
(

� – γ +u
)

= 0 in �. (4.9)

Proof Subtracting (4.7) from identity (4.1), we obtain

V� – W
(

� – γ +u
)

= P[Ǎ�u – f̃ ] in �. (4.10)
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Multiplying equality (4.10) by a, applying the Laplace operator 
, and taking into account
(3.57) and (3.17), we get r� f̃ = r�(Ǎ�u) = Au in �. This means that f̃ is an extension of the
distribution Au ∈ Hs–2(�) to ˜Hs–2(�), and u satisfies (4.8). Then (2.15) implies

P[Ǎ�u – f̃ ](y) =
〈

Ǎ�u – f̃ , P(·, y)
〉

�
= –

〈

T+(f̃ ; u), P(·, y)
〉

∂�

= VT+(f̃ ; u)(y), y ∈ �. (4.11)

Substituting (4.11) into (4.10) leads to (4.9). �

For 1
2 < s < 3

2 , a ∈ Cs
+(�), and g ∈ Hs–1(�), let us introduce the operator A∇

� as

A∇
�g := –∇ · E̊�(g∇a). (4.12)

Lemma 4.3 Let 1
2 < s < 3

2 .
(i) If a ∈ C|s–1|+1

+ (�), then the following operator is continuous:

A∇
� : Hs–1(�) → ˜Hs–2(�). (4.13)

(ii) If a ∈ Cs
+(�), then the following operator is continuous and compact:

A∇
� : Hs(�) → ˜Hs–2(�). (4.14)

Proof (i) If a ∈ C|s–1|+1
+ (�), then ∇a ∈ C|s–1|

+ (�), and by Theorem 2.6, ∇a is a multiplier in
Hs–1(�), which implies the continuity of operator (4.13).

(ii) For 1 ≤ s < 3
2 , we have s = |s – 1| + 1, which by item (i) implies the continuity of

operator (4.13) and thus the continuity and compactness of operator (4.14).
For 1

2 < s < 1, we need an estimate of the norm ‖g∇a‖Hs–1(�). First, by Definition 2.5 the
inclusion a ∈ Cs

+(�) implies that there exists t ∈ (s, 1) such that a ∈ C0,t(�) = Bt∞,∞(�) =
Ft∞,∞(�) (see, e.g., Proposition in [45, Sect. 2.1.2]) and hence ∇a ∈ Ft–1∞,∞(�). Then, by
Theorem 1 from [45, Sect. 4.4.3],

‖g∇a‖Ft–1
2,∞(�) ≤ C‖∇a‖Ft–1∞,∞(�)‖g‖Hσ (�)

≤ C‖a‖C0,t (�)‖g‖Hσ (�), ∀ σ ∈ (1 – t, s). (4.15)

On the other hand, by (3.49), item (ii) of Proposition from [45, Sect. 2.2.1], and (4.15) we
obtain

∥

∥A∇
�g

∥

∥

˜Hs–2(�) ≤ c3‖g∇a‖Hs–1(�) = c3‖g∇a‖Fs–1
2,2 (�)

≤ C1‖g∇a‖Ft–1
2,∞(�) ≤ C1C‖a‖C0,t (�)‖g‖Hσ (�).

Thus the operator A∇
� : Hσ (�) → ˜Hs–2(�) is continuous, which implies the continuity and,

by the Rellich compact embedding theorem, also the compactness of operator (4.14) for
1
2 < s < 1. �
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In accordance with notation (2.10), let us also denote


̌�g := ∇ · E̊�r�∇g.

Let us now discuss the trace and two forms of the co-normal derivative associated with
equation (4.7).

Lemma 4.4
(i) Under the hypotheses of Lemma 4.2,

γ +u + γ +Ru – V� –
1
2
� + W� = γ +P f̃ on ∂�, (4.16)

T+(f̃ ; u) + T+



(

A∇
�u; aRu

)

–
1
2
� – W ′


� + L
(a�)

= T+

(f̃ ;P
 f̃ ) on ∂�. (4.17)

(ii) If, moreover, a ∈ C
3
2

+ (�), then

T+(f̃ ; u) + T+Ru –
1
2
� – W ′� + T+W� = T+(f̃ + E̊R∗ f̃ ;P f̃ ) on ∂�, (4.18)

where R∗ is defined in (3.14) and (3.16).

Proof (i) Equation (4.16) is implied by (4.7) and (3.95).
To prove (4.17), let us first multiply (4.7) by a to obtain

–V
� + W
(a�) = P
 f̃ – au – aRu in �. (4.19)

Since 
{–V
� +W
(a�)} = 0, for the both sides of (4.19) the canonical co-normal deriva-
tive T+


 is well defined,

–T+

V
� + T+


W
(a�) = T+

(P
 f̃ – au – aRu), (4.20)

and by (2.17)

T+

(P
 f̃ – au – aRu) = –

(

γ –1)∗

̌�(P
 f̃ – au – aRu), (4.21)

because by (4.19),


̃�(P
 f̃ – au – aRu) = E̊�
(P
 f̃ – au – aRu) = E̊�

{

– V
� + W
(a�)
}

= 0.

Note that, by the second equality in (3.16),


(aRu) = –∇ · [
P
(u∇a)
]

= –∇ · (u∇a) = r�A∇
�u in �, (4.22)

which implies that A∇
�u ∈ ˜Hs–2(�) is an extension of 
(aRu) ∈ Hs–2(�). Further (see

(2.10)),


̌�(au) = ∇ · E̊�r�∇(ua) = ∇ · E̊�r�(u∇a) + ∇ · E̊�r�(a∇u)
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= –A∇
�u + Ǎ�u in R

n.

Then

–
̌�(P
 f̃ – au – aRu) = f̃ – 
̌�P
 f̃ – (f̃ – Ǎ�u) –
[

A∇
�u – 
̌�(aRu)

]

in R
n,

and by (2.13)

T+

(P
 f̃ – au – aRu) = T+


(f̃ ;P
 f̃ ) – T+(f̃ ; u) – T+



(

A∇
�u; aRu

)

.

Substituting this in (4.20), we obtain

T+(f̃ ; u) + T+



(

A∇
�u; aRu

)

– T+

V
� + T+


W
(a�) = T+

(f̃ ;P
 f̃ ) on ∂�.

Taking into account jump relation (3.63) and (3.66) with (3.67), we arrive at (4.17).
(ii) To prove (4.18), let us first remark that

AP f̃ = f̃ + R∗ f̃ in �, (4.23)

which implies, due to (4.8), that A(P f̃ – u) = R∗ f̃ in �, where R∗ is defined in (3.14) and
(3.16), and since a ∈ C

3
2

+ (�), we obtain by (3.39) that R∗ f̃ ∈ Hσ (�) for some σ > – 1
2 . Then

A(P f̃ – u) can be canonically extended to Ã(P f̃ – u) = E̊�R∗ f̃ ∈ ˜Hσ (�) ⊂ ˜Hs–2(�). This
implies that there exists a canonical co-normal derivative of (P f̃ – u), for which, due to
(2.17) and (2.13), we have

T+(P f̃ – u) =
(

γ –1)∗[Ã(P f̃ – u) – Ǎ�P f̃ + Ǎ�u
]

=
(

γ –1)∗[E̊�R∗ f̃ – Ǎ�P f̃ + Ǎ�u]

=
(

γ –1)∗[f̃ + E̊�R∗ f̃ – Ǎ�P f̃ + Ǎ�u – f̃ ]

= T+(f̃ + E̊�R∗ f̃ ,P f̃ ) – T+(f̃ , u), (4.24)

where f̃ + E̊�R∗ f̃ ∈ ˜Hs–2(�) is an extension of AP f̃ due to (4.23). From (4.7) we have
P f̃ – u = Ru – V� + W� in �. Substituting this in the left-hand side of (4.24) and taking
into account jump relation (3.96), we arrive at (4.18). �

Note that, unlike (4.17), the co-normal derivative form (4.18) of relation (4.7) is written
without referring to the corresponding constant-coefficient potentials.

Remark 4.5 Let 1
2 < s < 3

2 and f̃ ∈ ˜H–1/2(�) ⊂ ˜Hs–2(�).
(i) Then evidently P
 f̃ ∈ Hs,–1/2(�,
) and

T+

(f̃ ;P
 f̃ ) = T+


P
 f̃ . (4.25)

(ii) Furthermore, if the hypotheses of Lemma 4.2 are satisfied and f̃ ∈ ˜H–1/2(�), then
(4.8) implies that u ∈ Hs,–1/2(�, A) and T+(f̃ ; u) = T+(Ãu; u) = T+u. Henceforth,
(4.17) takes the simpler form

T+u + T+



(

A∇
�u; aRu

)

–
1
2
� – W ′


� + L+

(a�) = T+


P
 f̃ on ∂�. (4.26)
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If, in addition, au ∈ Hs,–1/2(�,
), then by (4.22)


(aRu) = r�A∇
�u = –∇ · (u∇a) = Au – 
(au) ∈ ˜H– 1

2• (�).

Hence the canonical co-normal derivative T+

(aRu) is well defined, and by (2.13),

(2.17), (3.16), and (4.22)

T+



(

A∇
�u; aRu

)

=
(

γ –1)∗[A∇
�u – 
̌�(aRu)

]

=
(

γ –1)∗[A∇
�u – 
̃(aRu)

]

+ T+

(aRu)

=
(

γ –1)∗[–∇ · E̊�(u∇a) + E̊�∇ · (u∇a)
]

+ T+

(aRu)

=
(

γ –1)∗[Ǎu – Ãu] +
(

γ –1)∗[–
̌(au) + 
̃(au)
]

+ T+

(aRu)

= –T+u + T+

(au) + T+


(aRu). (4.27)

This reduces (4.26) to the relation

T+

(au) + T+


(aRu) –
1
2
� – W ′


� + L+

(a�) = T+


P
 f̃ on ∂� (4.28)

with only canonical normal derivatives associated with the Laplace operator
involved.

(iii) If the hypotheses of Lemma 4.2 are satisfied and, moreover, f̃ ∈ ˜H–1/2(�), and
a ∈ C

3
2

+ (�), then, by (3.32) and (3.39), P f̃ ∈ Hs,– 1
2 (�; A) and R∗ f̃ ∈ ˜H–1/2(�),

implying T+(f̃ + E̊�R∗ f̃ ;P f̃ ) = T+(P f̃ ). Henceforth, (4.18) reduces to the relation

T+u + T+Ru –
1
2
� – W ′� + T+W� = T+P f̃ on ∂�

with only canonical co-normal derivatives associated with the operator A involved.

Remark 4.6 (i) Let the hypotheses of Lemma 4.2 be satisfied and suppose that a sequence
{f̃j} ∈ ˜H– 1

2 (�) converges to f̃ in ˜Hs–2(�). By the continuity of operators (3.30) and (3.34),
estimate (2.14), and relation (4.25) for f̃j, we obtain that

T+

(f̃ ;P
 f̃ ) = lim

j→∞ T+

P
 f̃j in Hs– 3

2 (∂�);

see also Theorem 7.1.
(ii) If, moreover, a ∈ C

3
2

+ (�), then, similarly,

T+(f̃ + E̊�R∗ f̃ ,P f̃ ) = lim
j→∞ T+(f̃j + E̊�R∗ f̃j,P f̃j) = lim

j→∞ T+P f̃j.

Lemma 4.4 and the third Green identity (4.4) imply the following assertion.

Corollary 4.7 Let � be a bounded Lipschitz domain, and let 1
2 < s < 3

2 , a ∈ Cs
+(�), u ∈

Hs(�), and f̃ ∈ ˜Hs–2(�) be such that Au = r� f̃ in �.
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(i) Then

1
2
γ +u + γ +Ru – VT+(f̃ ; u) + Wγ +u = γ +P f̃ on ∂�, (4.29)

1
2

T+(f̃ , u) + T+



(

A∇
�u; aRu

)

– W ′

T+(f̃ , u) + L


(

aγ +u
)

= T+

(f̃ ;P
 f̃ ) on ∂�. (4.30)

(ii) If, moreover, a ∈ C
3
2

+ (�), then

1
2

T+(f̃ , u) + T+Ru – W ′T+(f̃ , u) + T+Wγ +u

= T+(f̃ + E̊�R∗ f̃ ,P f̃ ) on ∂�, (4.31)

where R∗ is defined in (3.14) in (3.16).

Let us extend to Lipschitz domains and s ∈ ( 1
2 , 3

2 ) Lemma 4.2(i,ii) from [3], which is
proved there for smooth domains and s = 1.

Lemma 4.8 Let � be a bounded simply connected Lipschitz domain, and let a ∈ Cs
+(�)

with 1
2 < s < 3

2 .
(i) If �∗ ∈ Hs– 3

2 (∂�) and r�V�∗ = 0, then �∗ = 0.
(ii) If �∗ ∈ Hs– 1

2 (∂�) and r�W�∗ = 0, then �∗ = 0.

Proof To prove (i), let us multiply equation r�V�∗ = 0 by a, which by the first relation in
(3.56) reduces it to r�V
�∗ = 0 in �. Taking the trace of this equation on ∂� and using
the first relation in (3.95) (for the case a = 1), by Theorem 7.3 we obtain item (i).

Similarly, multiplying the equation r�W�∗ = 0 by a, the second relation in (3.56) re-
duces it to r�W
(a�∗) = 0 in �. Taking the trace of this equation on ∂� and using the
first jump relation in (3.95) (for the case a = 1), we obtain – 1

2 �̂∗ +W
�̂∗ = 0 on ∂�, where
�̂∗ = a�∗. Since this equation for �̂∗ is uniquely solvable (see Theorem 7.3), by condition
(2.5) this implies item (ii). �

Theorem 4.9 Let � be a bounded simply connected Lipschitz domain, and let a ∈ Cs
+(�)

with 1
2 < s < 3

2 . Let f̃ ∈ ˜Hs–2(�). A function u ∈ Hs(�) is a solution of PDE Au = r� f̃ in � if
and only if it is a solution of boundary-domain integro-differential equation (4.4).

Proof If u ∈ Hs(�) solves PDE Au = r� f̃ in �, then by Theorem 4.1(ii) it satisfies (4.4). On
the other hand, if u solves the boundary-domain integro-differential equation (4.4), then
using Lemma 4.2 for � = T+(f̃ ; u) and � = γ +u completes the proof. �

5 Segregated BDIE systems for the Dirichlet problem
For 1

2 < s < 3
2 , let us consider the Dirichlet problem:

Find a function u ∈ Hs(�) satisfying the equations

Au = f in �, (5.1)

γ +u = ϕ0 on ∂�, (5.2)

where f ∈ Hs–2(�) and ϕ0 ∈ Hs– 1
2 (∂�).
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Equation (5.1) is understood in the distributional sense (2.7), and the Dirichlet boundary
condition (5.2) is understood in the trace sense. The following uniqueness assertion is well
known for s = 1 and follows from the first Green identity; hence it also holds for 1 ≤ s < 3/2.

Theorem 5.1 Let a ∈ C|s–1|
+ (�) with 1 ≤ s < 3

2 . The Dirichlet problem (5.1)–(5.2) has at
most one solution in Hs(�).

5.1 BDIE formulations and equivalence to the Dirichlet problem
Let 1

2 < s < 3
2 . In this section, we reduce the Dirichlet problem (5.1)–(5.2) to three differ-

ent segregated boundary-domain integral equation (BDIE) systems. Two of these formu-
lations, for s = 1 and infinitely smooth coefficients and infinitely smooth boundary, were
analysed in [33].

Let f̃ ∈ ˜Hs–2(�) be an extension of f ∈ Hs–2(�) (i.e., f = r� f̃ ), which always exists; see
[31, Lemma 2.15 and Theorem 2.16]. Let us substitute into (4.4), (4.29), (4.30), and (4.31)
the generalised co-normal derivative and the trace of the function u as

T+(f̃ ; u) = ψ , γ +u = ϕ0,

where ϕ0 is the known right-hand side of the Dirichlet boundary condition (5.2), and ψ ∈
Hs– 3

2 (∂�) is a new unknown function that will be regarded as formally segregated from u.
Thus we will look for the unknown couple (u,ψ) ∈ Hs(�) × Hs– 3

2 (∂�).
BDIE system (D1). Let a ∈ Cs

+(�). To reduce the Dirichlet BVP (5.1)–(5.2) to the BDIE
system (D1), we will use equation (4.4) in � and equation (4.29) on ∂�. Then we arrive at
the following system of the boundary-domain integral equations, (D1), which is similar to
the corresponding system in [33]:

u + Ru – Vψ = FD1
1 in �, (5.3)

γ +Ru – Vψ = FD1
2 on ∂�, (5.4)

where

FD1 =

[

FD1
1

FD1
2

]

=

[

FD
0

γ +FD
0 – ϕ0

]

and FD
0 := P f̃ – Wϕ0 in �. (5.5)

Note that, for ϕ0 ∈ Hs– 1
2 (∂�) and f̃ ∈ ˜Hs–2(�), we have the inclusion FD

0 ∈ Hs(�) due to
the mapping properties of the Newtonian (volume) and layer potentials; see (3.30) and
(3.69). Hence FD1 ∈ Hs(�) × Hs– 1

2 (∂�).
BDIE system (D2
). Let a ∈ Cs

+(�). To obtain a segregated BDIE system of the second
kind, we will use equation (4.4) in � and equation (4.30) on ∂�. Then we arrive at the
following BDIE system (D2
):

u + Ru – Vψ = FD2

1 in �, (5.6)

1
2
ψ + T+




(

A∇
�u; aRu

)

– W ′

ψ = FD2


2 on ∂�, (5.7)
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where

FD2
 =

[

FD2

1

FD2

2

]

=

[

P f̃ – Wϕ0

T+

(f̃ ;P
 f̃ ) – L
(aϕ0)

]

. (5.8)

Due to the mapping properties of the operators involved in (5.11), we have FD2
 ∈
Hs(�) × Hs– 3

2 (∂�).
BDIE system (D2). Let the coefficient be smoother than in the first two cases, a ∈ C

3
2

+ (�).
Now we will use equation (4.4) in � and equation (4.31) on ∂�. Then we arrive at another
BDIE system of the second kind, (D2), which is similar to the corresponding system in [33]:

u + Ru – Vψ = FD2
1 in �, (5.9)

1
2
ψ + T+Ru – W ′ψ = FD2

2 on ∂�, (5.10)

where

FD2 =

[

FD2
1

FD2
2

]

=

[

P f̃ – Wϕ0

T+(f̃ + E̊�r�R∗ f̃ ;P f̃ ) – T+Wϕ0

]

. (5.11)

Due to the mapping properties of the operators involved in (5.11), we have FD2 ∈ Hs(�)×
Hs– 3

2 (∂�).
Let us prove that BVP (5.1)–(5.2) in � is equivalent to each of the three systems of BDIEs,

(D1), (D2
), and (D2).

Theorem 5.2 Let a ∈ Cs
+(�) with 1

2 < s < 3
2 . Let ϕ0 ∈ Hs– 1

2 (∂�), f ∈ Hs–2(�), and f̃ ∈
˜Hs–2(�) be such that r� f̃ = f .

(i) If a function u ∈ Hs(�) solves the Dirichlet BVP (5.1)–(5.2), then the couple
(u,ψ) ∈ Hs(�) × Hs– 3

2 (∂�), where

ψ = T+(f̃ ; u) on ∂� (5.12)

solves the BDIE systems (D1), (D2
) and, if a ∈ C
3
2

+ (�), then also the BDIE system
(D2).

(ii) Vice versa, if a a couple (u,ψ) ∈ Hs(�) × Hs– 3
2 (∂�) solves one of the BDIE systems,

(D1), (D2
), or (D2) (if a ∈ C
3
2

+ (�)), then this solution solves the other BDIE systems,
whereas u solves the Dirichlet BVP, and ψ satisfies (5.12).

Proof (i) Let u ∈ Hs(�) be a solution to BVP (5.1)–(5.2). Setting ψ by (5.12) evidently im-
plies ψ ∈ Hs– 3

2 (∂�). Then it immediately follows from Theorem 4.9 and relations (4.29)–
(4.31) that the couple (u,ψ) solves systems (D1), (D2)
, and, if a ∈ C

3
2

+ (�), then also (D2),
with the right-hand sides (5.5), (5.8), and (5.11), respectively, which completes the proof
of item (i).

(ii) Let now a couple (u,ψ) ∈ Hs(�) × Hs– 3
2 (∂�) solve BDIE system (5.3)–(5.4). Taking

the trace of equation (5.3) on ∂�, and subtracting equation (5.4) from it, we obtain

γ +u = ϕ0 on ∂�, (5.13)
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i.e., u satisfies the Dirichlet condition (5.2). Equation (5.3) and Lemma 4.2 with � = ψ and
� = ϕ0 imply that u is a solution of PDE (5.1), and

V�∗ – W�∗ = 0 in �,

where �∗ = ψ – T+(f̃ ; u) and �∗ = ϕ0 – γ +u. Due to equation (5.13), �∗ = 0. Then
Lemma 4.8(i) implies �∗ = 0, i.e., condition (5.12). Thus u obtained from solution of BDIE
system (D1) solves the Dirichlet problem and hence, by item (i) of the theorem, (u,ψ)
solves also BDIE system (D2
) and, if a ∈ C

3
2

+ (�), then also (D2).
Let now a couple (u,ψ) ∈ Hs(�) × Hs– 3

2 (∂�) solve BDIE system (5.6)–(5.7). Lemma 4.2
for equation (5.6) implies that u is a solution of PDE (5.1), and equation (4.9) holds for
� = ψ and � = ϕ0, whereas Corollary 4.7 gives equation (4.30). Multiplication of (4.9) by
a reduces it to

V


(

ψ – T+(f̃ ; u)
)

– W


(

a
(

ϕ0 – γ +u
))

= 0 in �. (5.14)

Subtracting (4.30) from equation (5.7) and taking into account (5.14) give

ψ – T+(f̃ ; u) = 0 on ∂�, (5.15)

that is, equation (5.12) is proved. Equations (5.14) and (5.15) give W
�∗ = 0 in �, where
�∗ = a(ϕ0 – γ +u). Then Lemma 4.8(ii) implies �∗ = 0 on ∂�. This means that u satisfies
the Dirichlet condition (5.2). Thus u obtained from solution of BDIE system (D2
) solves
the Dirichlet problem, and hence, by item (i) of the theorem, the couple (u,ψ) solves also
BDIE system (D1) and, if a ∈ C

3
2

+ (�), then also (D2).
Let, finally, a ∈ C

3
2

+ (�), and let a couple (u,ψ) ∈ Hs(�) × Hs– 3
2 (∂�) solve BDIE system

(5.9)–(5.10). Lemma 4.2 for equation (5.9) implies that u is a solution of PDE (5.1), and
equation (4.9) holds for � = ψ and � = ϕ0, whereas Corollary 4.7 gives equation (4.31).
Subtracting (4.31) from equation (5.10) and adding to it the canonical co-normal deriva-
tive T+ of equation (4.9) lead to (5.12). Equations (4.9) and (5.12) imply W�∗ = 0 in �,
where �∗ = ϕ0 – γ +u. Then by Lemma 4.8(ii) we deduce �∗ = 0 on ∂�. This means that
u satisfies the Dirichlet condition (5.2). Thus u obtained from solution of BDIE system
(D2) solves the Dirichlet problem, and hence, by item (i) of the theorem, the couple (u,ψ)
solves also BDIE systems (D1) and (D2
). �

5.2 Properties of BDIE system operators for the Dirichlet problem
BDIE systems (D1), (D2
), and (D2) can be written as

D
1UD = FD1, D

2
UD = FD2
, and D
2UD = FD2,

respectively. Here UD := (u,ψ)� ∈ Hs(�) × Hs– 3
2 (∂�),

D
1 :=

[

I – R –V
γ +R –V

]

,

D
2
 :=

[

I + R –V
T+


(A∇
�; aR) 1

2 I – W ′



]

, D
2 :=

[

I + R –V
T+R 1

2 I – W ′

]

,
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whereas FD1, FD2
, and FD2 are given by (5.5), (5.8), and (5.11), respectively. Note that

T+



(

A∇
�; aR

)

u :=
(

γ –1)∗(A∇
�u – 
̌�(aRu)

)

. (5.16)

Let 1
2 < s < 3

2 . The operators

D
1 : Hs(�) × Hs– 3

2 (∂�) → Hs(�) × Hs– 1
2 (∂�) if a ∈ Cs

+(�), (5.17)

D
2
 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 3
2 (∂�) if a ∈ Cs

+(�), (5.18)

D
2 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 3
2 (∂�) if a ∈ C

3
2

+ (�), (5.19)

are continuous due to the mapping properties of the operators constituting them (see
Sect. 3), whereas for the right-hand sides of the BDIE systems, we have the inclusions
FD1 ∈ Hs(�) × Hs– 1

2 (∂�), FD2
 ∈ Hs(�) × Hs– 3
2 (∂�), and FD2 ∈ Hs(�) × Hs– 3

2 (∂�).

Theorem 5.3 Let � be a bounded simply connected Lipschitz domain, and let 1
2 < s < 3

2 .
Operators (5.17)–(5.19) are Fredholm operators with zero index.

Proof The continuity of operators has been already proved.
To prove the Fredholm property of operator (5.17), let us consider the operator

D
1
0 :=

[

I –V
0 –V

]

: Hs(�) × Hs– 3
2 (∂�) → Hs(�) × Hs– 1

2 (∂�). (5.20)

As a result of compactness properties of the operators R and γ +R given by (3.35) and
(3.42) in Theorem 3.2, operator (5.20) is a compact perturbation of operator (5.17). The
operator D1

0 is an upper triangular matrix operator with the following scalar diagonal in-
vertible operators:

I : Hs(�) → Hs(�),

V : Hs– 3
2 (∂�) → Hs– 1

2 (∂�),

where the invertibility of the operator V is implied by the invertibility of operator V
 in
(7.4) and by the first relation in (3.93). This implies that operator (5.20) is invertible. Thus
(5.17) is a Fredholm operator with zero index.

The operator

D
2
0 :=

[

I –V
0 1

2 I – W ′



]

: Hs(�) × Hs– 3
2 (∂�) → Hs(�) × Hs– 3

2 (∂�) (5.21)

is a compact perturbation of operator (5.18). Indeed, the operators R : Hs(�) → Hs(�)
is compact due to Theorem 3.2. The compactness of the operator T+


(A∇
�; aR) : Hs(�) →

Hs– 3
2 (∂�), defined by (5.16), follows from that of the operator A∇

� : Hs(�) → ˜Hs–2(�) given
by Lemma 4.3(ii) and of the operator R : Hs(�) → Hs(�), i.e., operator (3.35) in Theo-
rem 3.2.
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Consider the diagonal operators of the upper triangular matrix operator D2
0. The op-

erator I : Hs(�) → Hs(�) is evidently invertible, whereas the invertibility of the operator
1
2 I – W ′


 : Hs– 3
2 (∂�) → Hs– 3

2 (∂�) is stated by Theorem 7.3. This implies that operator
(5.21) is invertible, and hence operator (5.18) is Fredholm with zero index.

Operator (5.21) is also a compact perturbation of operator (5.19). Indeed, the opera-
tors R : Hs(�) → Hs(�) and T+R : Hs(�) → Hs– 3

2 (∂�) are compact due to Theorem 3.2.
From the first representation in (3.94), for a ∈ C

3
2

+ (�), the operator W ′

 – W ′ = ∂νa

a V
 :
Hs– 3

2 (∂�) → Hσ (∂�), where σ = min{ 1
2 , s – 1

2 }, is continuous, which implies that the op-
erator W ′


 – W ′ : Hs– 3
2 (∂�) → Hs– 3

2 (∂�) is compact. Since operator (5.21) is invertible,
this implies that operator (5.19) is Fredholm with zero index. �

Theorem 5.4 Let � be a bounded simply connected Lipschitz domain, 1
2 < s < 3

2 , and σ =
max{1, s}. The following operators are continuously invertible:

D
1 : Hs(�) × Hs– 3

2 (∂�) → Hs(�) × Hs– 1
2 (∂�) if a ∈ Cσ

+ (�), (5.22)

D
2
 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 3
2 (∂�) if a ∈ Cσ

+ (�), (5.23)

D
2 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 3
2 (∂�) if a ∈ C

3
2

+ (�). (5.24)

Proof First, let 1 ≤ s < 3
2 . Then σ = s, and the injectivity of operators (5.22)–(5.24) is im-

plied by the equivalence Theorem 5.2(ii) and the BVP uniqueness Theorem 5.1. Indeed,
consider, for example, the injectivity of operator (5.22). For the homogeneous equation
D1UD = 0, its zero right-hand side FD1 = 0 can be represented as in (5.5) in terms of f̃ = 0
and ϕ0 = 0. Then, by Theorem 5.2(ii), UD = (u, T+(0; u))�, where u is a solution of the
Dirichlet problem (5.1)–(5.2) with the right-hand sides f = 0 and ϕ0 = 0, which has only
the trivial solution u = 0 due to Theorem 5.1. The arguments for the injectivity of opera-
tors (5.23) and (5.22) are similar.

Since, by Theorem 5.3, operators (5.22)–(5.24) are Fredholm with zero index, this im-
plies their invertibility for 1 ≤ s < 3

2 .

Let now 1
2 < s ≤ 1. Then σ = 1, i.e., a ∈ C1

+(�) for operators (5.22)–(5.23), and a ∈ C
3
2

+ (�)
for operator (5.24). Hence, for a fixed function a satisfying the corresponding conditions
in (5.22)–(5.23), all these operators are continuous for 1

2 < s ≤ 1. By Theorem 5.3 they
are also Fredholm with zero index. Since, as already proved, at s = 1, these operators are
also invertible, Lemma 7.5 implies that their kernels (null-spaces) consist of only the zero
element for any s ∈ ( 1

2 , 1], which implies that the operators are invertible for all s from this
interval. �

Theorems 5.4 and 5.2 imply the following assertion.

Corollary 5.5 Let � be a bounded simply connected Lipschitz domain, 1
2 < s < 3

2 , f ∈
Hs–2(�), ϕ0 ∈ Hs– 1

2 (∂�), and a ∈ Cσ
+ (�) with σ = max{1, s}. Then the Dirichlet problem

(5.1)–(5.2) is uniquely solvable in Hs(�). The solution is u = (AD)–1(f ,ϕ0)�, where the
inverse operator (AD)–1 : Hs–2(�) × Hs– 1

2 (∂�) → Hs(�) to the left-hand side operator
AD : Hs(�) → Hs–2(�) × Hs– 1

2 (∂�) of the Dirichlet problem (5.1)–(5.2) is continuous.

Remark 5.6 For a given function f ∈ Hs–2(�), its extension f̃ ∈ ˜Hs–2(�) is not unique.
Nevertheless, since the solution of the Dirichlet BVP (5.1)–(5.2) does not depend on this
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extension, equivalence Theorem 5.2(ii) implies that u in the solution of BDIE systems (D1)
and (D2) does not depend on the particular choice of extension f̃ although ψ obviously
does; see (5.12).

6 Segregated BDIE systems for the Neumann problem
Let us consider the Neumann problem: Find a function u ∈ Hs(�) satisfying the equations

Au = r� f̃ in �, (6.1)

T+(f̃ ; u) = ψ0 on ∂�, (6.2)

where ψ0 ∈ Hs– 3
2 (∂�) and f̃ ∈ ˜Hs–2(�).

Equation (6.1) in understood in the distribution sense (2.7), and the Neumann bound-
ary condition (6.2) in the sense (2.13). The following assertion is well known and can be
proved, e.g., using variational settings and the Lax–Milgram lemma.

Theorem 6.1 Let s = 1 and a ∈ L∞(�).
(i) The homogeneous Neumann problem (6.1)–(6.2) admits only one linearly

independent solution u0 = 1 in H1(�).
(ii) The non-homogeneous Neumann problem (6.1)–(6.2) is solvable if and only if

〈

f̃ , u0〉

�
–

〈

ψ0,γ +u0〉

∂�
= 0. (6.3)

Remark 6.2 Item (i) in Theorem 6.1 evidently implies that, for 1 ≤ s < 3
2 and a ∈ C|s–1|

+ (�),
the homogeneous Neumann problem associated with (6.1)–(6.2) also admits only one lin-
early independent solution u0 = 1 in Hs(�).

6.1 BDIE formulations and equivalence to the Neumann problem
Let 1

2 < s < 3
2 . We will explore different possibilities of reducing the Neumann problem

(6.1)–(6.2) to a BDIE system. Let us represent in (4.4), (4.29), (4.30), and (4.31) the gener-
alised co-normal derivative and the trace of the function u as

T+(f̃ ; u) = ψ0, γ +u = ϕ,

where ψ0 is the known right-hand side of the Neumann boundary condition (6.2), and
ϕ ∈ Hs– 1

2 (∂�) is a new unknown function that will be regarded as formally segregated
from u. Thus we will look for the unknown couple (u,ϕ) ∈ Hs(�) × Hs– 1

2 (∂�).
BDIE system (N1
). Let a ∈ Cs

+(�). Using equation (4.4) in � and equation (4.30) on ∂�,
we arrive at the following BDIE system (N1
) of two equations for the couple of unknowns
(u,ϕ):

u + Ru + Wϕ = FN1

1 in �, (6.4)

T+



(

A∇
�u; aRu

)

+ L
(aϕ) = FN1

2 on ∂�, (6.5)

where

FN1
 =

[

FN1

1

FN1

2

]

=

[

P f̃ + Vψ0

T+

(f̃ ;P
 f̃ ) – 1

2ψ0 + W ′

ψ0

]

. (6.6)
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Due to the mapping properties of the operators involved in (6.9), we have FN1
 ∈ Hs(�)×
Hs– 3

2 (∂�).
BDIE system (N1). Let the coefficient be smoother than in the previous case, a ∈ C

3
2

+ (�).
Now, using equation (4.4) in � and equation (4.31) on ∂�, we arrive at the following BDIE
system (N1) of two equations for the couple of unknowns (u,ϕ), which is similar to the
corresponding system in [33]:

u + Ru + Wϕ = FN1
1 in �, (6.7)

T+Ru + T+Wϕ = FN1
2 on ∂�, (6.8)

where

FN1 =

[

FN1
1

FN1
2

]

=

[

P f̃ + Vψ0

T+(f̃ + E̊�r�R∗ f̃ ;P f̃ ) – 1
2ψ0 + W ′ψ0

]

. (6.9)

Due to the mapping properties of the operators involved in (6.9), we have FN1 ∈ Hs(�) ×
Hs– 3

2 (∂�).
BDIE system (N2). Let again a ∈ Cs

+(�). If we use equation (4.4) in � and equation (4.29)
on ∂�, we arrive for the couple (u,ϕ) at the following BDIE system (N2) of two equations
of the second kind, which is also similar to the corresponding system in [33]:

u + Ru + Wϕ = FN2
1 in �, (6.10)

1
2
ϕ + γ +Ru + Wϕ = FN2

2 , on ∂�. (6.11)

where

FN2 =

[

FN2
1

FN2
2

]

=

[

FN
0

γ +FN
0

]

, FN
0 := P f̃ + Vψ0 in �. (6.12)

Due to the mapping properties of the operators involved in (6.12), we have FN2 ∈ Hs(�)×
Hs– 1

2 (∂�).

Theorem 6.3 Let 1
2 < s < 3

2 , a ∈ Cs
+(�), ψ0 ∈ Hs– 3

2 (∂�), and f̃ ∈ ˜Hs–2(�).
(i) If a function u ∈ Hs(�) solves the Neumann problem (6.1)–(6.2), then the couple

(u,ϕ) with ϕ = γ +u ∈ Hs– 1
2 (∂�) solves BDIE systems (N1
), (N2), and, if a ∈ C

3
2

+ (�),
also (N1).

(ii) Vice versa, if a couple (u,ϕ) ∈ Hs(�) × Hs– 1
2 (∂�) solves one of the BDIE systems,

(N1
), (N2), or (N1) (if a ∈ C
3
2

+ (�)), then the couple solves the other two BDE
systems, whereas u solves the Neumann problem (6.1)–(6.2) and γ +u = ϕ.

Proof (i) Let u ∈ Hs(�) be a solution of the Neumann problem (6.1)–(6.2). Then from
Theorem 4.9 and relations (4.29)–(4.31) we see that the couple (u,ϕ) with ϕ = γ +u solves
BDIE systems (N1
), (N2), and (N1) with the right-hand sides (6.6), (6.12), and (6.9), re-
spectively, which proves item (i).

(ii) Let a couple (u,ϕ) ∈ Hs(�) × Hs– 1
2 (∂�) solve BDIE system (N1
). Lemma 4.2 for

equation (6.4) implies that u is a solution of PDE (6.1), and equation (4.9) holds for � = ψ0
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and � = ϕ, whereas Corollary 4.7 gives equation (4.31). Multiplication of (4.9) by a reduces
it to

V


(

ψ0 – T+(f̃ ; u)
)

– W


(

a
(

ϕ – γ +u
))

= 0 in �. (6.13)

Subtracting (4.31) from equation (6.5), we get T+(f̃ ; u) = ψ0 on ∂�, i.e., u satisfies the Neu-
mann condition (6.2). Further, from (6.13) we derive W
(a(ϕ – γ +u)) = 0 in �, whence
γ +u = ϕ on ∂� by Lemma 4.8, completing item (ii) for BDIE system (N1
).

Let a couple (u,ϕ) ∈ H1(�) × H 1
2 (∂�) solve BDIE system (N1). Lemma 4.2 for equation

(6.7) implies that u is a solution of PDE (6.1), and equation (4.9) holds for � = ψ0 and
� = ϕ, whereas Corollary 4.7 gives equation (4.31). Subtracting (4.31) from equation (6.8)
gives T+(f̃ ; u) = ψ0 on ∂�, i.e., u satisfies the Neumann condition (6.2). Further, from (4.9)
we derive W (γ +u – ϕ) = 0 in �, whence γ +u = ϕ on ∂� by Lemma 4.8, completing item
(ii) for BDIE system (N1).

Let now a couple (u,ϕ) ∈ H1(�) × H 1
2 (∂�) solve BDIE system (N2). Further, taking the

trace of (6.10) on ∂� and comparing the result with (6.11), we easily derive that γ +u = ϕ on
∂�. Lemma 4.2 for equation (6.10) implies that u is a solution of PDE (6.1), and equations
(4.9) holds for � = ψ0 and � = ϕ. Further, from (4.9) and relation γ +u = ϕ we derive

V
(

ψ0 – T+(f̃ ; u)
)

= 0 in �,

whence T+(f̃ ; u) = ψ0 on ∂� by Lemma 4.8, i.e., u solves the Neumann problem (6.1)–(6.2),
which completes the proof of item (ii) for BDIE system (N2). �

6.2 Properties of BDIE system operators for the Neumann problem
BDIE systems (N1
), (N1), and (N2) can be written, respectively, as

N
1
UN = FN1
, N

1UN = FN1, N
2UN = FN2,

where UN = (u,ϕ)� ∈ Hs(�) × Hs– 1
2 (∂�),

N
1
 :=

[

I + R W
T+


(A∇
�; aR) L0

]

, N
1 :=

[

I + R W
T+R T+W

]

,

N
2 :=

[

I + R W
γ +R 1

2 I + W

]

,

and we denoted L0g := L
(ag). Let 1
2 < s < 3

2 . Due to the mapping properties of the poten-
tials (see Sect. 3), the operators

N
1
 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 3
2 (∂�) if a ∈ Cs

+(�), (6.14)

N
1 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 3
2 (∂�) if a ∈ C

3
2

+ (�), (6.15)

N
2 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 1
2 (∂�) if a ∈ Cs

+(�) (6.16)

are continuous, whereas for the right-hand sides of the BDIE systems, we have the inclu-
sions FN1
 ∈ Hs(�) × Hs– 3

2 (∂�), FN1 ∈ Hs(�) × Hs– 3
2 (∂�), FN2 ∈ Hs(�) × Hs– 1

2 (∂�).
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Theorem 6.4 Let � be a bounded simply connected Lipschitz domain, and let 1
2 < s < 3

2 .
Operators (6.14)–(6.16) are Fredholm operators with zero index.

Proof The continuity of operators is already proved.
Let us consider operator (6.14). Due to estimate (2.5) and Theorem 7.3, the operator L0 :

Hs– 1
2 (∂�) → Hs– 3

2 (∂�) is a Fredholm operator with zero index. Therefore the operator

N
1
0 :=

[

I W
0 L0

]

: Hs(�) × Hs– 1
2 (∂�) → Hs(�) × Hs– 3

2 (∂�) (6.17)

is also Fredholm with zero index. Operator (6.14) is a compact perturbation of N1
0 since

the operators

R : Hs(�) → Hs(�), (6.18)

T+



(

A∇
�; aR

)

: Hs(�) → Hs– 3
2 (∂�) (6.19)

are compact due to Theorem 3.2, as has been shown in the compactness proof related to
operator (5.21). Thus operator (6.14) is Fredholm with zero index as well.

Operator (6.17) is also a compact perturbation of operator (6.15). Indeed, the operators
(6.18),

T+W – L0 : Hs– 1
2 (∂�) → Hs– 3

2 (∂�),

T+R : Hs(�) → Hs– 3
2 (∂�)

are compact, due to relations (3.94) and (3.96) and Theorem 3.7. Thus operator (6.15) is
Fredholm with zero index as well.

To analyse operator (6.16), let us consider the auxiliary operator

N
2
0 :=

[

I W
0 1

2 I + W

]

: Hs(�) × Hs– 1
2 (∂�) → Hs(�) × Hs– 1

2 (∂�). (6.20)

For any function g , we can represent ( 1
2 I +W)g = 1

a ( 1
2 I +W
)(ag), which, by Theorem 7.3,

implies that the operator 1
2 I + W : Hs– 1

2 (∂�) → Hs– 1
2 (∂�) and hence operator (6.20) are

Fredholm with zero index. Due to the compactness of operator (6.18), operator (6.16) is a
compact perturbation of operator (6.20) and thus is Fredholm with zero index as well. �

Theorem 6.5 Let � be a bounded simply connected Lipschitz domain, 1
2 < s < 3

2 , and σ =
max{1, s}. The following operators have one-dimensional null-spaces, kerN1
 = kerN1 =
kerN2, in Hs(�) × Hs– 1

2 (∂�), spanned over the element (u0,ϕ0) = (1, 1):

N
1
 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 3
2 (∂�) if a ∈ Cσ

+ (�), (6.21)

N
1 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 3
2 (∂�) if a ∈ C

3
2

+ (�), (6.22)

N
2 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 1
2 (∂�) if a ∈ Cσ

+ (�). (6.23)
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Proof The conditions on the coefficient a imply that, for s = 1, operators (6.21)–(6.23) are
continuous. Then the equivalence Theorem 6.3 and Theorem 6.1(i) imply that the homo-
geneous BDIE systems (N1
), (N1), and (N2) have only one linear independent solution
U0 = (u0,ϕ0)� = (1, 1)� in H1(�) × H 1

2 (∂�). Indeed, consider, for example, the homoge-
neous equation N1
UN = 0. Its zero right-hand side FN1
 = 0 can be represented as in
(6.6) in terms of f̃ = 0 and ψ0 = 0. Then, by Theorem 6.3(ii), UN = (u,γ +u)�, where u is a
solution of the Neumann problem (6.1)–(6.2) with the right-hand sides f = 0 and ψ0 = 0,
which has only the one linearly independent solution, u = 1, due to Theorem 6.1. This
proves the theorem for s = 1, and then Lemma 7.5 and Theorem 6.4 complete the proof
for 1

2 < s < 3
2 . �

Lemma 6.6 Let � be a bounded simply connected Lipschitz domain, 1
2 < s < 3

2 , and
a ∈ Cσ

+ (�) with σ = max{1, s}. For any couple (F1,F2) ∈ Hs(�) × Hs– 3
2 (∂�), there exists

a unique couple (f̃∗,�∗) ∈ ˜Hs–2(�) × Hs– 1
2 (∂�) such that

F1 = P f̃∗ – W�∗ in �, (6.24)

F2 = T+

(f̃∗;P f̃∗) – L
(a�∗) on ∂�. (6.25)

Moreover, (f̃∗,�∗) = C∗(F1,F2), and C∗ : Hs(�) × Hs– 3
2 (∂�) → ˜Hs–2(�) × Hs– 1

2 (∂�) is a
linear continuous operator given by

f̃∗ = 
̌�(aF1) + γ ∗F2, (6.26)

�∗ =
1
a

(

–
1
2

I + W


)–1

γ +{

–aF1 + P


[


̌�(aF1) + γ ∗F2
]}

. (6.27)

Proof Let us first assume that there exist (f̃∗,�∗) ∈ ˜Hs–2(�) × Hs– 1
2 (∂�) satisfying equa-

tions (6.24) and (6.25) and find their expressions in terms of F1 and F2. Multiplying (6.24)
by a, we get

aF1 – P
 f̃∗ = –W
(a�∗) in �. (6.28)

Applying the Laplace operator to (6.28), we obtain


(aF1 – P
 f̃∗) = 
(aF1) – f̃∗ = –
W
(a�∗) = 0 in �, (6.29)

which means


(aF1) = r� f̃∗ in � (6.30)

and aF1 –P
 f̃∗ ∈ Hs,0(�;
). Applying the canonical co-normal derivative operator T+

 to

both sides of equation (6.28) and taking into account that –
̃W
(a�∗) = 
̃(aF1 –P
 f̃∗) =
0 because W
(a�∗) is a harmonic function in �, we obtain, due to (2.17) and (2.13),

–L
(a�∗) = –T+

W
(a�∗)

= T+

(aF1 – P
 f̃∗)
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=
(

γ –1)∗[

̃�(aF1 – P
 f̃∗) – 
̌�(aF1 – P
 f̃∗)

]

= –
(

γ –1)∗

̌�(aF1 – P
 f̃∗) = T+


(0; aF1 – P
 f̃∗), (6.31)

where (6.30) was taken into account. Substituting this into (6.25), we obtain

F2 = T+

(f̃∗, aF1) on ∂�. (6.32)

Due to (6.30), we can represent

f̃∗ = 
̌�(aF1) + f̃1∗ = ∇ · E̊�∇(aF1) – γ ∗�∗, (6.33)

where f̃1∗ ∈ Hs–2
∂� , which, due to, e.g., [31, Theorem 2.10], can be in turn represented as

f̃1∗ = –γ ∗�∗ with some �∗ ∈ Hs– 3
2 (∂�). Then (6.30) is satisfied, and

F2 = T+

(f̃∗, aF1) =

(

γ –1)∗[f̃∗ – 
̌(aF1)
]

=
(

γ –1)∗ f̃1∗ = –
(

γ –1)∗
γ ∗�∗ = –�∗, (6.34)

because 〈(γ –1)∗γ ∗�∗, w〉∂� = 〈γ ∗�∗,γ –1w〉� = 〈�∗, w〉∂� for any w ∈ H 3
2 –s(∂�). Hence

(6.33) reduces to (6.26).
Now (6.28) can be written in the form

W
(a�∗) = F
 in �, (6.35)

where

F
 := –aF1 + P
 f̃∗ = –aF1 + P


[


̌�(aF1) + γ ∗F2
]

(6.36)

is a harmonic function in � due to (6.29). The trace of equation (6.35) gives

–
1
2

a�∗ + W
(a�∗) = γ +F
 on ∂�. (6.37)

Since the operator – 1
2 I + W
 : Hs– 1

2 (∂�) → Hs– 1
2 (∂�) is an isomorphism (see Theo-

rem 7.3), this implies

�∗ =
1
a

(

–
1
2

I + W


)–1

γ +F


=
1
a

(

–
1
2

I + W


)–1

γ +{

–aF1 + P


[


̌�(aF1) + γ ∗F2
]}

,

which coincides with (6.27).
Relations (6.26) and (6.27) can be written as (f̃∗,�∗) = C∗(F1,F2), where C∗ : Hs(�) ×

Hs– 3
2 (∂�) → ˜Hs–2(�)×Hs– 1

2 (∂�) is a linear continuous operator, as claimed. We still have
to check that the functions f̃∗ and �∗, given by (6.26) and (6.27), satisfy equations (6.24)
and (6.25). Indeed, �∗ given by (6.27) satisfies equation (6.37) with F
 given by (6.36), and
thus γ +W
(a�∗) = γ +F
. Since both W
(a�∗) andF
 are harmonic functions belonging
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to the space Hs(�), this implies (6.35) and, by (6.26), also (6.24). Finally, (6.26) implies by
(6.34) that (6.32) is satisfied, and adding (6.31) to it leads to (6.25).

Let us now prove that the operator C∗ is unique. Indeed, let a couple (f̃∗,�∗) ∈ ˜Hs–2(�)×
Hs– 1

2 (∂�) be a solution of linear system (6.24)–(6.25) with F1 = 0 and F2 = 0. Then (6.30)
implies that r� f̃∗ = 0 in �, i.e., f̃∗ ∈ Hs–2

∂� ⊂ ˜Hs–2(�). Hence, (6.32) reduces to 0 = T+

(f̃∗, 0)

on ∂�. By the first Green identity (2.15) this gives

0 =
〈

T+

(f̃∗, 0),γ +v

〉

∂�
= 〈f̃∗, v〉� ∀ v ∈ H2–s(�),

which implies f̃∗ = 0 in R
n. Finally, (6.27) gives �∗ = 0. Hence, any solution of non-

homogeneous linear system (6.24)–(6.25) has only one solution, which implies the unique-
ness of the operator C∗. �

Theorem 6.7 Let � be a bounded simply connected Lipschitz domain, 1
2 < s < 3

2 , and a ∈
Cσ

+ (�) with σ = max{1, s}. The co-kernel of operator (6.14) is spanned over the functional

g∗1
 := (0, 1)� (6.38)

in [Hs(�) × Hs– 3
2 (∂�)]∗ = ˜H–s(�) × H 3

2 –s(∂�), i.e., g∗1
(F1,F2) = 〈F2,γ +u0〉∂�, where
u0 = 1.

Proof Let us consider the equation N1
U = (F1,F2)�, i.e., the BDIE system (N1
) for
(u,ϕ) ∈ H1(�) × H 1

2 (∂�),

u + Ru + Wϕ = F1 in �, (6.39)

T+



(

A∇
�u; aRu

)

+ L
(aϕ) = F2 on ∂�, (6.40)

with arbitrary (F1,F2) ∈ Hs(�) × Hs– 3
2 (∂�). By Lemma 6.6 the right-hand side of the sys-

tem can be presented in the form (6.24)–(6.25), i.e., system (6.39)–(6.40) reduces to

u + Ru + W (ϕ + �∗) = P f̃∗ in �, (6.41)

T+



(

A∇
�u; aRu

)

+ L
(aϕ + a�∗) = T+

(f̃∗;P f̃∗) on ∂�, (6.42)

where the couple (f̃∗,�∗) ∈ ˜Hs–2(�) × Hs– 1
2 (∂�) is given by (6.26)–(6.27). Up to the no-

tations, system (6.41)–(6.42) is the same as (6.4)–(6.5) with the right-hand side given by
(6.6), where ψ0 = 0.

First, let s = 1. Then Theorems 6.1 and 6.3 imply that BDIE system (6.41)–(6.42) and
hence (6.39)–(6.40) are solvable if and only if

〈

f̃∗, u0〉

�
=

〈


̌�(aF1) + γ ∗F2, u0〉

�

=
〈∇ · E̊�∇(aF1) + γ ∗F2, u0〉

Rn

= –
〈

E̊�∇(aF1),∇u0〉

Rn +
〈

F2,γ +u0〉

∂�

=
〈

F2,γ +u0〉

∂�
= 0, (6.43)
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where we took into account that u0 = 1 in R
n. Thus the functional g∗1
 defined by (6.38)

generates the necessary and sufficient solvability condition of equation N1
U = (F1,F2)�.
Hence g∗1
 is a basis of the co-kernel of N1
 (and thus the kernel of the operator N1
∗

adjoint to N1
) for s = 1.
Let us now choose any s ∈ ( 1

2 , 3
2 ). By Theorem 6.4, operator (6.14) and thus its adjoint

are Fredholm with zero index. We already proved that, at s = 1, the kernel of the adjoint
operator is spanned over g∗1
. For any fixed coefficient a ∈ Cσ

+ (�), the operator

N
1
 : Hs′ (�) × Hs′– 1

2 (∂�) → Hs′ (�) × Hs′– 3
2 (∂�) (6.44)

is continuous for any s′ ∈ ( 1
2 ,σ ] and particularly for s′ = s and s′ = 1. Then Lemma 7.5

implies that the co-kernel of operator (6.44) is the same for s′ = s and s′ = 1 and is spanned
over g∗1
. �

Lemma 6.8 Let � be a bounded simply connected Lipschitz domain, 1
2 < s < 3

2 , and

a ∈ C
3
2

+ (�). For any couple (F1,F2) ∈ Hs(�) × Hs– 3
2 (∂�), there exists a unique couple

(f̃∗∗,�∗∗) ∈ ˜Hs–2(�) × Hs– 1
2 (∂�) such that

F1 = P f̃∗∗ – W�∗∗ in �, (6.45)

F2 = T+(f̃∗∗ + E̊�R∗ f̃∗∗;P f̃∗∗) – T+W�∗∗ on ∂�. (6.46)

Moreover, (f̃∗∗,�∗∗) = C∗∗(F1,F2), and C∗∗ : Hs(�) × Hs– 3
2 (∂�) → ˜Hs–2(�) × Hs– 1

2 (∂�) is
a linear continuous operator given by

f̃∗∗ = 
̌�(aF1) + γ ∗(F2 +
(

γ +F1
)

∂na
)

, (6.47)

�∗∗ =
1
a

(

–
1
2

I + W


)–1

γ +{

–aF1 + P


[


̌�(aF1) + γ ∗(F2 +
(

γ +F1
)

∂na
)]}

. (6.48)

Proof Let us first assume that there exist (f̃∗∗,�∗∗) ∈ ˜Hs–2(�) × Hs– 1
2 (∂�) satisfying equa-

tions (6.45) and (6.46) and prove that they are then expressed in terms of F1 and F2 by
(6.47)–(6.48). Let us rewrite (6.45) as

F1 – P f̃∗∗ = –W�∗∗ in �, (6.49)

Multiplying (6.49) by a and applying the Laplace operator to it, we obtain


(aF1 – P
 f̃∗∗) = 
(aF1) – f̃∗∗ = –
W
(a�∗∗) = 0 in �, (6.50)

which means that


(aF1) = r� f̃∗∗ in � (6.51)

and aF1 – P
 f̃∗∗ ∈ Hs,0(�;
). By equality (6.49) and the continuity of operator (3.73) in
Theorem 3.5, we also have F1 – P f̃∗∗ ∈ H1,0(�; A), which implies that the canonical co-
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normal derivative T+(F1 –P f̃∗∗) is well defined. Applying the canonical co-normal deriva-
tive operator T+ to both sides of equation (6.49), we obtain

–T+W�∗∗ = T+(F1 – P f̃∗∗) = T+(

Ã(F1 – P f̃∗∗);F1 – P f̃∗∗
)

= T+(

E̊�∇ · (a∇(F1 – P f̃∗∗)
)

;F1 – P f̃∗∗
)

= T+(

E̊�
(aF1 – P
 f̃∗∗) – E̊�∇ · ((F1 – P f̃∗∗)∇a
)

;F1 – P f̃∗∗
)

= T+(

–E̊�∇ · (F1∇a) – E̊�R∗ f̃∗∗;F1 – P f̃∗∗
)

, (6.52)

where (6.50) and the third relation in (3.16) were taken into account. Substituting this into
(6.46), we obtain

F2 = T+(

f̃∗∗ – E̊�∇ · (F1∇a),F1
)

on ∂�. (6.53)

Due to (6.51), we can represent

f̃∗∗ = 
̌�(aF1) + f̃1∗ = ∇ · E̊�∇(aF1) – γ ∗�∗∗, (6.54)

where f̃1∗ ∈ Hs–2
∂� , which, due to, e.g., [31, Theorem 2.10], can be in turn represented as

f̃1∗ = –γ ∗�∗∗ with some �∗∗ ∈ Hs– 3
2 (∂�). Then (6.51) is satisfied, and

F2 = T+(

f̃∗∗ – E̊�∇ · (F1∇a),F1
)

=
(

γ –1)∗[f̃∗∗ – E̊�∇ · (F1∇a) – ǍF1
]

=
(

γ –1)∗[∇ · E̊�∇(aF1) – γ ∗�∗∗ – E̊�∇ · (F1∇a) – ∇ · E̊�(a∇F1)
]

=
(

γ –1)∗[∇ · E̊�(F1∇a) – γ ∗�∗∗ – E̊�∇ · (F1∇a)
]

= –�∗∗ –
(

γ +F1
)

∂na, (6.55)

because for any w ∈ H 3
2 –s(∂�),

〈(

γ –1)∗[∇ · E̊�(F1∇a) – γ ∗�∗∗ – E̊�∇ · (F1∇a)
]

, w
〉

∂�

=
〈∇ · E̊�(F1∇a) – γ ∗�∗∗ – E̊�∇ · (F1∇a),γ –1w

〉

�

=
〈∇ · E̊�(F1∇a),γ –1w

〉

Rn –
〈

γ ∗�∗∗,γ –1w
〉

�
–

〈

E̊�∇ · (F1∇a),γ –1w
〉

�

= –
〈

E̊�(F1∇a),∇γ –1w
〉

Rn – 〈�∗∗, w〉∂� +
〈

F1∇a,∇γ –1w
〉

�

–
〈

n · γ +(F1∇a),γ +γ –1w
〉

∂�
= –

〈(

γ +F1
)

∂na, w
〉

∂�
– 〈�∗∗, w〉∂�.

Hence (6.53) reduces to �∗∗ = –F2 – (γ +F1)∂na, and (6.54) to (6.47).
Now (6.49) can be written in the form

W
(a�∗∗) = F
 in �, (6.56)

where

F
 := –aF1 + P
 f̃∗∗ = –aF1 + P


[


̌�(aF1) + γ ∗(F2 +
(

γ +F1
)

∂na
)]

(6.57)

is a harmonic function in � due to (6.50). The trace of equation (6.56) gives

–
1
2

a�∗∗ + W
(a�∗∗) = γ +F
 on ∂�. (6.58)
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Since the operator – 1
2 I + W
 : Hs– 1

2 (∂�) → Hs– 1
2 (∂�) is an isomorphism (see Theo-

rem 7.3), this implies

�∗∗ =
1
a

(

–
1
2

I + W


)–1

γ +F


=
1
a

(

–
1
2

I + W


)–1

γ +{

–aF1 + P


[


̌�(aF1) + γ ∗(F2 +
(

γ +F1
)

∂na
)]}

,

which coincides with (6.48).
Relations (6.47) and (6.48) can be written as (f̃∗∗,�∗∗) = C∗∗(F1,F2), where C∗∗ : Hs(�) ×

Hs– 3
2 (∂�) → ˜Hs–2(�) × Hs– 1

2 (∂�) is a linear continuous operator, as claimed. We still
have to check that the functions f̃∗∗ and �∗∗ given by (6.47) and (6.48) satisfy equa-
tions (6.45) and (6.46). Indeed, �∗∗ given by (6.48) satisfies equation (6.58), and thus
γ +W
(a�∗∗) = γ +F
. Since both W
(a�∗∗) and F
 are harmonic functions belonging
to the space Hs(�), this implies (6.56)–(6.57) and by (6.47) also (6.45). Finally, (6.47) im-
plies by (6.55) that (6.53) is satisfied, and adding (6.52) to it leads to (6.46).

Let us now prove that the operator C∗∗ is unique. Indeed, let a couple (f̃∗∗,�∗∗) ∈
˜Hs–2(�) × Hs– 1

2 (∂�) be a solution of linear system (6.45)–(6.46) with F1 = 0 and F2 = 0.
Then (6.51) implies that r� f̃∗∗ = 0 in �, i.e., f̃∗∗ ∈ Hs–2

∂� ⊂ ˜Hs–2(�). Hence, (6.53) reduces to
0 = T+(f̃∗∗, 0) on ∂�. By the first Green identity (2.15) this gives

0 =
〈

T+(f̃∗∗, 0),γ +v
〉

∂�
= 〈f̃∗∗, v〉� ∀ v ∈ H2–s(�),

which implies f̃∗∗ = 0 in R
n. Finally, (6.48) gives �∗∗ = 0. Hence, non-homogeneous linear

system (6.45)–(6.46) has only one solution, which implies the uniqueness of the opera-
tor C∗∗. �

Theorem 6.9 Let � be a bounded simply connected Lipschitz domain, 1
2 < s < 3

2 , and a ∈
C

3
2

+ (�). The co-kernel of operator (6.15) is spanned over the functional

g∗1 :=
((

γ +)∗
∂na, 1

)� (6.59)

in [Hs(�) × Hs– 3
2 (∂�)]∗ = ˜H–s(�) × H 3

2 –s(∂�), i.e.,

g∗1(F1,F2) =
〈(

γ +F1
)

∂na + F2,γ +u0〉

∂�
,

where u0 = 1.

Proof Let us consider the equation N1U = (F1,F2)�, i.e., the BDIE system (N1) for (u,ϕ) ∈
Hs(�) × Hs– 1

2 (∂�),

u + Ru + Wϕ = F1 in �, (6.60)

T+Ru + T+W +ϕ = F2 on ∂�, (6.61)



Mikhailov Boundary Value Problems  (2018) 2018:87 Page 42 of 52

with arbitrary (F1,F2) ∈ Hs(�) × Hs– 3
2 (∂�). By Lemma 6.8 the right-hand side of the sys-

tem has form (6.45)–(6.46), i.e., system (6.60)–(6.61) reduces to

u + Ru + W (ϕ + �∗∗) = P f̃∗∗ in �, (6.62)

T+Ru + T+W (ϕ + �∗∗) = T+(f̃∗∗ + E̊�R∗ f̃∗∗,P f̃∗∗) on ∂�, (6.63)

where the couple (f̃∗∗,�∗∗) ∈ ˜Hs–2(�) × Hs– 1
2 (∂�) is given by (6.47)–(6.48). Up to the no-

tations, system (6.62)–(6.63) is the same as (6.7)–(6.8) with the right-hand side given by
(6.9), where ψ0 = 0.

First, let s = 1. Then Theorems 6.1 and 6.3 imply that BDIE system (6.62)–(6.63) and
hence (6.60)–(6.61) are solvable if and only if

〈

f̃∗∗, u0〉

�
=

〈


̌�(aF1) + γ ∗(F2 +
(

γ +F1
)

∂na
)

, u0〉

�

=
〈∇ · E̊�∇(aF1) + γ ∗(F2 +

(

γ +F1
)

∂na
)

, u0〉

Rn

= –
〈

E̊�∇(aF1),∇u0〉

Rn +
〈

F2 +
(

γ +F1
)

∂na,γ +u0〉

∂�

=
〈(

γ +F1
)

∂na + F2,γ +u0〉

∂�
= 0,

where we took into account that u0 = 1 in R
n. Thus the functional g∗1 defined by (6.59)

generates the necessary and sufficient solvability condition of equation N1U = (F1,F2)�.
Hence g∗1 is a basis of the co-kernel of N1 (and thus the kernel of the operator adjoint to
N1) for s = 1.

Let now s ∈ ( 1
2 , 3

2 ). By Theorem 6.4 operator (6.15) and thus its adjoint are Fredholm with
zero index. We already proved that, at s = 1, the kernel of the adjoint operator is spanned
over g∗1. Then Lemma 7.5 implies that the kernel is the same for any s ∈ ( 1

2 , 3
2 ). �

To find the co-kernel of operator (6.16), we need some auxiliary assertions. Lemma 6.10
and Theorem 6.11 were proved in [33, Lemma 6.4 and Theorem 6.5] for the infinitely
smooth coefficient a and boundary ∂�. We further only slightly modify these proofs for
the non-smooth coefficients and Lipschitz boundary.

Lemma 6.10 Let � be a bounded simply connected Lipschitz domain, s > 1
2 , a ∈ Cs

+(�),
and f̃ ∈ ˜Hs–2(�). If

r�Pf̃ = 0 in �, (6.64)

then f̃ = 0 in R
n.

Proof Multiplying (6.64) by a, taking into account (3.16), and applying the Laplace oper-
ator, we obtain r� f̃ = 0, which means f̃ ∈ Hs–2

∂� . If s ≥ 3
2 , then f̃ = 0 by Theorem 2.10 from

[31]. If 1
2 < s < 3

2 , then by the same theorem there exists v ∈ Hs– 3
2 (∂�) such that f̃ = γ ∗v.

This gives Pf̃ = Pγ ∗v = –Vv in R
n; see (3.53). Then (6.64) reduces to Vv = 0 in �, which

implies v = 0 on ∂� by Lemma 4.8(i), and thus f̃ = 0 in R
n. �
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Theorem 6.11 Let � be a bounded simply connected Lipschitz domain, 1
2 < s < 3

2 , and
a ∈ Cs

+(�). The operator

r�P : ˜Hs–2(�) → Hs(�) (6.65)

and its inverse

(r�P)–1 : Hs(�) → ˜Hs–2(�) (6.66)

are continuous, and

(r�P)–1g =
[


E̊�

(

I – r�V
V–1

 γ +)

– γ ∗V–1

 γ +]

(ag) in R
n, ∀ g ∈ Hs(�). (6.67)

Proof The continuity of (6.65) is given by Theorem 3.2. By Lemma 6.10 operator (6.65) is
injective. Let us prove its surjectivity. To this end, for arbitrary g ∈ Hs(�), let us consider
the following equation with respect to f̃ ∈ ˜Hs–2(�):

r�P
 f̃ = g in �. (6.68)

Let g1 ∈ Hs(�) be the (unique) solution of the following Dirichlet problem: 
g1 = 0 in �,
γ +g1 = γ +g , which can be particularly presented as g1 = V
V–1


 γ +g ; see, e.g., [11] or proof
of Lemma 2.6 in [31]. Let g0 := g – r�g1. Then g0 ∈ Hs(�) and γ +g0 = 0, and thus g0 can be
uniquely extended to E̊�g0 ∈ ˜Hs(�). Thus by (3.53) equation (6.68) takes form

r�P


[

f̃ + γ ∗V–1

 γ +g

]

= g0 in �. (6.69)

Any solution f̃ ∈ ˜Hs–2(�) of the corresponding equation in R
n,

P


[

f̃ + γ ∗V–1

 γ +g

]

= E̊�g0 in R
n, (6.70)

evidently solves (6.69). If f̃ solves (6.70), then applying the Laplace operator to (6.70), we
obtain

f̃ = Q̃g := 
E̊�g0 – γ ∗V–1

 γ +g = 
E̊�

(

g – r�V
V–1

 γ +g

)

– γ ∗V–1

 γ +g in R

n. (6.71)

On the other hand, substituting f̃ given by (6.71) into (6.70) and taking into account that
P

h̃ = h̃ for any h̃ ∈ ˜Hs(�), s ∈ R, we obtain that Q̃g is indeed a solution of equation
(6.70) and thus of (6.69). By Lemma 6.10 the solution of (6.69) is unique, which means
that the operator Q̃ is inverse to operator (6.65), i.e., Q̃ = (r�P)–1. Since 
 is a continuous
operator from ˜Hs(�) to ˜Hs–2(�), equation (6.71) implies that the operator (r�P)–1 = Q̃ :
Hs(�) → ˜Hs–2(�) is continuous. The relations P = 1

a P
 and a(x) ≥ amin > 0 then imply the
invertibility of operator (6.65) and ansatz (6.67). �

Theorem 6.12 Let � be a bounded simply connected Lipschitz domain, 1
2 < s < 3

2 , and a ∈
Cσ

+ (�) with σ = max{1, s}. The co-kernel of operator (6.16) is spanned over the functional

g∗2 :=

(

–aγ +∗( 1
2 + W ′


)V–1

 γ +u0

–a( 1
2 – W ′


)V–1

 γ +u0

)

(6.72)
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in [Hs(�) × Hs– 1
2 (∂�)]∗ = ˜H–s(�) × H 1

2 –s(∂�), i.e.,

g∗2(F1,F2)

=
〈

–aγ +∗
(

1
2

+ W ′



)

V–1

 γ +u0,F1

〉

�

+
〈

–a
(

1
2

– W ′



)

V–1

 γ +u0,F2

〉

∂�

,

where u0(x) = 1.

Proof Let us consider the equation N2U = (F1,F2)�, i.e., the BDIE system (N2),

u + Ru + Wϕ = F1 in �, (6.73)

1
2
ϕ + γ +Ru + Wϕ = F2 on ∂�, (6.74)

with arbitrary (F1,F2) ∈ Hs(�) × Hs– 1
2 (∂�) for (u,ϕ) ∈ Hs(�) × Hs– 1

2 (∂�).
Introducing the new variable ϕ′ = ϕ –(F2 –γ +F1), BDIE system (6.73)–(6.74) takes form

u + Ru + Wϕ′ = F ′
1 in �, (6.75)

1
2
ϕ′ + γ +Ru + Wϕ′ = γ +F ′

1 on ∂�, (6.76)

where

F ′
1 = F1 – W

(

F2 – γ +F1
) ∈ Hs(�).

On the other hand, by Theorem 6.11, we can always represent F ′
1 = P f̃∗, with

f̃∗ =
[


E̊�

(

I – r�V
V–1

 γ +)

– γ +∗V–1

 γ +](

aF ′
1
) ∈ ˜Hs–2(�).

For F ′
1 = P f̃∗, the right-hand side of BDIE system (6.73)–(6.74) is the same as in (6.12) with

f̃ = f̃∗ and ψ0 = 0.
First, let s = 1. Then Theorems 6.1 and 6.3 imply that BDIE system (6.75)–(6.76) is solv-

able if and only if

〈

f̃∗, u0〉

�
=

〈[


E̊�

(

I – r�V
V–1

 γ +)

– γ +∗V–1

 γ +](

aF ′
1
)

, u0〉

Rn

=
〈

E̊�

(

I – r�V
V–1

 γ +)(

aF ′
1
)

,
u0〉

Rn –
〈

V–1

 γ +(

aF ′
1
)

,γ +u0〉

∂�

= –
〈

γ +(

aF ′
1
)

,V–1

 γ +u0〉

∂�

= –
〈

1
2
[

γ +(aF1) + (aF2)
]

– W


[

a
(

F2 – γ +F1
)]

,V–1

 γ +u0

〉

∂�

= –
〈

F1, aγ +∗
(

1
2

+ W ′



)

V–1

 γ +u0

〉

�

–
〈

F2, a
(

1
2

– W ′



)

V–1

 γ +u0

〉

∂�

= 0. (6.77)

Thus the functional g∗2 defined by (6.72) generates a necessary and sufficient solvability
condition of equation N2U = (F1,F2)�. Hence g∗2 is a basis of the co-kernel of operator
(6.16) for s = 1.
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Let us now choose any s ∈ ( 1
2 , 3

2 ). By Theorem 6.4 operator (6.16) and thus its adjoint
are Fredholm with zero index. We already proved that, at s = 1, the kernel of the adjoint
operator is spanned over g∗2. For any fixed coefficient a ∈ Cσ

+ (�), the operator

N
2 : Hs′ (�) × Hs′– 1

2 (∂�) → Hs′ (�) × Hs′– 1
2 (∂�) (6.78)

is continuous for any s′ ∈ ( 1
2 ,σ ] and particularly for s′ = s and s′ = 1. Then Lemma 7.5

implies that the co-kernel of operator (6.78) is the same for s′ = s and s′ = 1 and is spanned
over g∗2. �

Theorems 6.3, 6.5, and 6.7 (or 6.9) imply the following extension of Theorem 6.1 to the
range 1

2 < s < 3
2 .

Corollary 6.13 Let � be a bounded simply connected Lipschitz domain, 1
2 < s < 3

2 , f̃ ∈
˜Hs–2(�), ψ0 ∈ Hs– 3

2 (∂�), and a ∈ Cσ
+ (�) with σ = max{1, s}.

The homogeneous Neumann problem (6.1)–(6.2) admits only one linearly independent
solution u0 = 1 in Hs(�). The non-homogeneous Neumann problem (6.1)–(6.2) is solvable
in Hs(�) if and only if condition (6.3) is satisfied.

Proof Assuming that a function u is a solution of the homogeneous Neumann problem,
by Theorem 6.3 the couple (u,ϕ) = (u,γ+ϕ) solves the homogeneous BDIE system (N1
),
and then Theorem 6.7 implies that u is spanned over u0 = 1.

Assume that solvability condition (6.3) is satisfied. Then the right-hand side (6.6) of the
BDIE system (N1
) satisfies its solvability condition g∗1
(F1,F2) = 〈F2,γ +u0〉∂� = 0 given
by Theorem 6.7. Indeed, due to the first Green identities (2.15) and (2.18) applied to the
operator 
 and Remark 2.7, since V
ψ0 is a harmonic function in � and u0 = 1, we obtain

〈

F2,γ +u0〉

∂�
=

〈

T+

(f̃ ;P
 f̃ ) –

1
2
ψ0 + W ′


ψ0,γ +u0
〉

∂�

=
〈

T+

(f̃ ;P
 f̃ ) – ψ0 + T+


V
ψ0,γ +u0〉

∂�

=
〈

f̃ , u0〉

�
+ Ě�

(

P
 f̃ , u0) –
〈

ψ0,γ +u0〉

∂�

+
〈


̃V
ψ0, u0〉

�
+ Ě�

(

V
ψ0, u0)

=
〈

f̃ , u0〉

�
–

〈

ψ0,γ +u0〉

∂�
. (6.79)

Hence the BDIE system (N1
) is solvable, implying solvability of the Neumann BVP due
to Theorem 6.3(ii). This proves that condition (6.3) is sufficient.

Let us now assume that there exists a solution of the Neumann BVP. Hence Theo-
rem 6.3(i) implies that the BDIE system (N1
) with the right-hand side (6.9) is solvable,
implying that its solvability condition 〈F2,γ +u0〉∂� = 0 is satisfied. Then (6.79) implies
condition (6.3), proving that it is necessary. �

6.3 Perturbed (stabilised) segregated BDIE systems for the Neumann problem
Theorem 6.5 implies that even when the solvability condition (6.3) is satisfied, the
solutions of BDIE systems (N1
), (N1), and (N2) are not unique, and moreover, the
BDIE left-hand side operators N1
, N1, and N2, have non-zero kernels and thus are
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not invertible. To find a solution (u,ϕ) from uniquely solvable BDIE systems with
continuously invertible left-hand side operators, let us consider, following [28], some
stabilised BDIE systems obtained from (N1
), (N1), and (N2) by finite-dimensional
operator perturbations. Note that other choices of the perturbing operators are also pos-
sible.

We further use the notations UN = (u,ϕ)�, U0 = (1, 1)�, and |∂�| :=
∫

∂�
dS.

Let us introduce the perturbed counterparts of the BDIE systems (N1
), (N1), and (N2):

N̂
1
UN = FN1
, N̂

1UN = FN1, N̂
2UN = FN2, (6.80)

where N̂1
 := N1
 + N̊1
, N̂1 := N1 + N̊1, N̂2 := N2 + N̊2, and

N̊
1
UN (y) = N̊

1UN (y) := g0(UN)

G1(y) =
1

|∂�|
∫

∂�

ϕ(x) dS

(

0
1

)

, (6.81)

that is,

g0(UN)

:=
1

|∂�|
∫

∂�

ϕ(x) dS, G1(y) :=

(

0
1

)

, (6.82)

whereas

N̊
2UN := g0(UN)

G2 =
1

|∂�|
∫

∂�

ϕ(x) dS

(

a–1(y)
γ +a–1(y)

)

,

that is, g0(UN ) is as in (6.82), and

G2(y) :=

(

a–1(y)
γ +a–1(y)

)

.

Theorem 6.14 Let � be a bounded simply connected Lipschitz domain, 1
2 < s < 3

2 , and
σ = max{1, s}.

(i) The following operators are continuous and continuously invertible:

N̂
1
 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 3
2 (∂�) if a ∈ Cσ

+ (�), (6.83)

N̂
1 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 3
2 (∂�) if a ∈ C

3
2

+ (�), (6.84)

N̂
2 : Hs(�) × Hs– 1

2 (∂�) → Hs(�) × Hs– 1
2 (∂�) if a ∈ Cσ

+ (�). (6.85)

(ii) If the conditions g∗1
(FN1
) = 0, g∗1(FN1) = 0, or g∗2(FN2) = 0 are satisfied, then the
unique solutions of the perturbed BDIE systems in (6.80) give the solutions UN of the
corresponding original BDIE systems (N1
), (N1), and (N2) such that

g0(UN)

=
1

|∂�|
∫

∂�

ϕ dS =
1

|∂�|
∫

∂�

γ +u dS = 0.
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Proof For the functional g∗1
 given by (6.38) in Theorem 6.7, g∗1
(G1) = |∂�|. Similarly,
for the functional g∗1 given by (6.59) in Theorem 6.9, g∗1(G1) = |∂�|.

For the functional g∗2 given by (6.72) in Theorem 6.12, since the operator V–1

 :

H 1
2 (∂�) → H– 1

2 (∂�) is positive definite and u0(x) = 1, there exists a positive constant
C such that

g∗2(G2) =
〈

–aγ +∗
(

1
2

+ W ′



)

V–1

 γ +u0, a–1u0

〉

�

+
〈

–a
(

1
2

– W ′



)

V–1

 γ +u0,γ +(

a–1u0)
〉

∂�

= –
〈(

1
2

+ W ′



)

V–1

 γ +u0 +

(

1
2

– W ′



)

V–1

 γ +u0,γ +u0

〉

∂�

= –
〈

V–1

 γ +u0,γ +u0〉

∂�

≤ –C
∥

∥γ +u0∥
∥

2

H
1
2 (∂�)

≤ –C
∥

∥γ +u0∥
∥

2
L2(∂�)

= –C|∂�|2 < 0. (6.86)

On the other hand, g0(U0) = 1. Hence Theorem 7.4 from [28] implies the claims of the
theorem. �

7 Auxiliary assertions
We provide here some auxiliary results used in the main text.

Theorem 7.1 Let 1
2 < s < 3

2 , u ∈ Hs(�), a ∈ Cσ
+ (�) with σ = max{1, s}, Au = r� f̃ in an inte-

rior or exterior Lipschitz domain � for some f̃ ∈ ˜Hs–2(�). Let {fk} ∈ ˜H– 1
2• (�) be a sequence

such that ‖f̃ – E̊�fk‖˜Hs–2(�) → 0 as k → ∞.
Then there exists a sequence {uk} ∈ Hs,– 1

2 (�; A) such that Auk = fk in � and ‖u –
uk‖Hs(�) → 0 as k → ∞. Moreover, ‖T+(uk) – T+(f̃ ; u)‖

Hs– 3
2 (∂�)

→ 0 as k → ∞.

Proof Let us consider the Dirichlet problem

Auk = fk in �, (7.1)

γ +uk = γ +u on ∂�, (7.2)

By Corollary 5.5 the unique solution of problem (7.1)–(7.2) in Hs(�) is uk = (AD)–1(fk ,ϕk)�,
where (AD)–1 : Hs–2(�) × Hs– 1

2 (∂�) → Hs(�) is a continuous operator. Hence the func-
tions uk converge to u in Hs(�) as k → ∞. Since Auk = fk ∈ ˜H– 1

2• (�), we obtain that
uk ∈ Hs,– 1

2 (�; A) and the canonical conormal derivative T+uk is well defined. Then sub-
tracting (2.16) for uk from (2.12), we obtain

T+(f̃ ; u) – T+uk =
(

γ –1)∗[f̃ – E̊�fk + Ǎ�(u – uk)
]

.

Hence

∥

∥T+(f̃ ; u) – T+uk
∥

∥

Hs– 3
2 (∂�)

≤ C
(‖f̃ – E̊�fk‖˜Hs–2(�) + C1‖u – uk‖Hs(�)

)

(7.3)
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for some positive C and C1. Since the right-hand side of (7.3) tends to zero as k → ∞, so
does the left-hand side. �

Note that since D(�) ⊂ ˜H– 1
2• (�) is dense in ˜Hs–2(�), the sequence {fk} ∈ ˜H– 1

2• (�) from
the hypotheses of Theorem 7.1 does always exist.

The following multiplication theorem is well known; see, e.g., [15, Theorems 1.4.1.1,
1.4.1.2], [54, Theorem 2(b)], [1, Theorems 1.9.1, 1.9.2, 1.9.5], [32, Theorem 3.2].

Theorem 7.2 Let �0 be an open set.
(i) If g ∈ L∞(�0), then gv ∈ L2(�0) and ‖gv‖L2(�) ≤ c‖g‖L∞(�0)‖v‖L2(�0) for every

v ∈ L2(�0).
(ii) If σ is a non-zero integer and g ∈ C|σ |–1,1(�0), then gv ∈ Hσ (�0) for every

v ∈ Hσ (�0), and ‖gv‖Hσ (�) ≤ c‖g‖C|σ |–1,1(�0)‖v‖Hσ (�0).
(iii) If σ is a non-integer, |σ | = m + θ , where m is a non-negative integer and 0 < θ < 1,

then for g ∈ Cm,η(�0) with θ < η < 1, we have gv ∈ Hσ (�0) and
‖gv‖Hσ (�) ≤ c‖g‖Cm,η(�0)‖v‖Hσ (�0) for every v ∈ Hσ (�0).

In all cases, c is a positive constant independent of g , v, or �0.

Theorem 7.3 Let � be a bounded simply connected Lipschitz domain, and let 0 ≤ σ ≤ 1.
The operators

V
 : Hσ–1(∂�) → Hσ (∂�), (7.4)

–
1
2

I + W
 : Hσ (∂�) → Hσ (∂�), (7.5)

–
1
2

I + W ′

 : H–σ (∂�) → H–σ (∂�) (7.6)

are isomorphisms, and the operators

1
2

I + W
 : Hσ (∂�) → Hσ (∂�), (7.7)

1
2

I + W ′

 : H–σ (∂�) → H–σ (∂�), (7.8)

L
 : Hσ (∂�) → Hσ–1(∂�) (7.9)

are Fredholm with zero index.

Proof The properties of the boundary integral operators (7.4)–(7.9) related to the har-
monic layer potential are well known; see, e.g., [51], [39, Theorem 4.1], [14, Theorem 8.1]
for the invertibility of operators (7.4)–(7.6) and the Fredholm properties of operators
(7.7)–(7.8). The Fredholm property of operator (7.9) for σ = 1

2 is also well known; see,
e.g., [27, Theorem 7.8]. Then the corresponding result for 0 ≤ σ ≤ 1 can be proved as in
[27, Theorem 7.17] by using a sharper regularity result from [11, Theorem 3]. �

Theorem 7.4 further is implied by [28, Lemma 2] (see also [50, Sect. 21], [49, Sect. 21.4],
where the particular case h∗

i (
◦
xj) = x̊∗

i (hj) = δij has been considered). Another approach,
although with hypotheses similar to those in Theorem 7.4, is presented in [17, Lemma
4.8.24].
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Theorem 7.4 Let B1 and B2 be two Banach spaces. Let A : B1 → B2 be a linear Fredholm
operator with zero index, and let A∗ : B∗

2 → B∗
1 be the adjoint operator with dim ker A =

dim ker A∗ = n < ∞, where ker A = span{x̊i}n
i=1 ⊂ B1 and ker A∗ = span{x̊∗

i }n
i=1 ⊂ B∗

2. Let

A1x :=
k

∑

i=1

hih∗
i (x),

where h∗
i and hi (i = 1, . . . , n) are elements from B∗

1 and B2, respectively, such that

det
[

h∗
i (x̊j)

] �= 0, det
[

x̊∗
i (hj)

] �= 0, i, j = 1, . . . , n. (7.10)

Then:
(i) the operator A – A1 : B1 → B2 is an isomorphism;

(ii) if y ∈ B2 satisfies the solvability conditions

x̊∗
i (y) = 0, i = 1, . . . , n, (7.11)

of the equation

Ax = y, (7.12)

then the unique solution x of equation

(A – A1)x = y, (7.13)

is a solution of equation (7.12) such that

h∗
i (x) = 0 (i = 1, . . . , k). (7.14)

(iii) Vice versa, if x is a solution of equation (7.13) satisfying conditions (7.14), then
conditions (7.11) are satisfied for the right-hand side y of equation (7.13), and x is a
solution of equation (7.12) with the same right-hand side y.

Note that more results about finite-dimensional operator perturbations are available in
[28].

The following known result (see, e.g., [42, Lemma 11.9.21]) is useful for us.

Lemma 7.5 Let X1, X2 and Y1, Y2, be Banach spaces such that the embeddings X1 ↪→ X2

and Y1 ↪→ Y2 are continuous, and the embedding Y1 ↪→ Y2 has a dense range. Assume that
T : X1 → Y1 and T : X2 → Y2 are Fredholm operators with the same index, ind(T : X1 →
Y1) = ind(T : X2 → Y2). Then Ker{T : X1 → Y1} = Ker{T : X2 → Y2}.

8 Concluding remarks
The Dirichlet and Neumann problems on a bounded Lipschitz domain for a variable-
coefficient second-order PDE with general right-hand side functions from Hs–2(�) and
˜Hs–2(�), 1

2 < s < 3
2 , respectively, were equivalently reduced to three direct segregated
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boundary-domain integral equation systems for each of the BVPs. This involved system-
atic use of the generalised co-normal derivatives. The operators associated with the left-
hand sides of all the BDIE systems were analysed in the corresponding Sobolev spaces.
It was shown that the operators of the BDIE systems for the Dirichlet problem are con-
tinuous and continuously invertible. For the Neumann problem, the BDIE system opera-
tors are continuous but only Fredholm with zero index; their kernels and co-kernels were
analysed, and appropriate finite-dimensional perturbations were constructed to make the
perturbed (stable) operators invertible and provide a solution of the original BDIE systems
and the Neumann problem.

The same approach can be implemented to extend to the general PDE right-hand sides,
non-smooth coefficients and Lipschitz domains: the BDIE systems for the mixed prob-
lems, unbounded domains, BDIEs of more general scalar PDEs and the systems of PDEs,
and the united and localised BDIEs, for which the analysis is now available for the right-
hand sides only from L2(�), with smooth coefficients and smooth domain boundaries; see
[2–10, 13, 30, 36, 37].
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