70 research outputs found

    Palynological, geochemical, and mineralogical characteristics of the Early Jurassic Liasidium Event in the Cleveland Basin, Yorkshire, UK

    Get PDF
    A previously proposed hyperthermal episode in the Early Jurassic (mid-Sinemurian) is investigated from the shallow marine succession at Robin Hood’s Bay, Cleveland Basin, Yorkshire, UK. Palynological study confirms that the stratigraphical extent of the distinctive dinoflagellate cyst Liasidium variabile corresponds very closely to the oxynotum Zone. The range of Liasidium variabile also corresponds to an overall negative excursion in carbon-isotopes measured in bulk organic matter, which here exhibits a double spike in the middle oxynotum Zone. Additionally, Liasidium variabile abundances track overall transgressive-regressive facies trends with peak abundance of dinoflagellate cysts corresponding to deepest water facies and maximum flooding. Lithological cycles (parasequences), defined by visual description and hand-held X-ray fluorescence analysis of powdered samples, match previously suggested short eccentricity cycles, and allow a total duration for the event of at least one million years to be suggested. Changes in clay mineralogy throughout the section determined by whole rock X-ray diffraction and scanning electron microscopy are shown to be largely related to authigenic processes, and neither support nor refute the proposition of coeval palaeoclimate changes. The combined characteristics of the Liasidium Event described from Robin Hood’s Bay are similar to, but much less extreme than, the Early Jurassic Toarcian Oceanic Anoxic Event albeit, at this locality, there is no evidence for the development of significant bottom water deoxygenation

    Vortex pinning in high-Tc materials via randomly oriented columnar defects, created by GeV proton-induced fission fragments

    Full text link
    Extensive work has shown that irradiation with 0.8 GeV protons can produce randomly oriented columnar defects (CD's) in a large number of HTS materials, specifically those cuprates containing Hg, Tl, Pb, Bi, and similar heavy elements. Absorbing the incident proton causes the nucleus of these species to fission, and the recoiling fission fragments create amorphous tracks, i.e., CD's. The superconductive transition temperature Tc decreases linearly with proton fluence and we analyze how the rate depends on the family of superconductors. In a study of Tl-2212 materials, adding defects decreases the equilibrium magnetization Meq(H) significantly in magnitude and changes its field dependence; this result is modeled in terms of vortex pinning. Analysis of the irreversible magnetization and its time dependence shows marked increases in the persistent current density and effective pinning energy, and leads to an estimate for the elementary attempt time for vortex hopping, tau ~ 4x10^(-9) s.Comment: Submitted to Physica C; presentation at ISS-2001. PDF file only, 13 pp. tota

    Total prompt γ

    Full text link
    The total prompt γ-ray energy distributions for the neutron-induced fission of 235U, 239,241Pu at incident neutron energy of 0.025 eV ‒ 100 keV, and the spontaneous fission of 252Cf were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. DANCE is a highly segmented, highly efficient 4π γ-ray calorimeter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total γ-ray energy vs multiplicity using a simulated DANCE response matrix. The mean values of the total prompt γ-ray energy, determined from the unfolded distributions, are ~ 20% higher than those derived from measurements using single γ-ray detector for all the fissile nuclei studied. This raises serious concern on the validity of the mean total prompt γ-ray energy obtained from the product of mean values for both prompt γ-ray energy and multiplicity

    ⁶³Ni(n,γ) cross sections measured with DANCE

    Get PDF
    The neutron capture cross section of the s-process branch nucleus 63Ni affects the abundances of other nuclei in its region, especially 63Cu and 64Zn. In order to determine the energy-dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4πBaF2 array DANCE. The (n,γ) cross section of 63Ni has been determined relative to the well-known 197Au standard with uncertainties below 15%. Various 63Ni resonances have been identified based on the Q value. Furthermore, the s-process sensitivity of the new values was analyzed with the new network calculation tool NETZ

    Initial results of coring at Prees, Cheshire Basin, UK (ICDP JET project): Towards an integrated stratigraphy, timescale, and Earth system understanding for the Early Jurassic

    Get PDF
    Drilling for the International Continental Scientific Drilling Program (ICDP) Early Jurassic Earth System and Timescale project (JET) was undertaken between October 2020 and January 2021. The drill site is situated in a small-scale synformal basin of the latest Triassic to Early Jurassic age that formed above the major Permian-Triassic half-graben system of the Cheshire Basin. The borehole is located to recover an expanded and complete succession to complement the legacy core from the Llanbedr (Mochras Farm) borehole drilled through 1967-1969 on the edge of the Cardigan Bay Basin, North Wales. The overall aim of the project is to construct an astronomically calibrated integrated timescale for the Early Jurassic and to provide insights into the operation of the Early Jurassic Earth system. Core of Quaternary age cover and Early Jurassic mudstone was obtained from two shallow partially cored geotechnical holes (Prees 2A to 32.2g¯m below surface (mg¯b.s.) and Prees 2B to 37.0g¯mg¯b.s.) together with Early Jurassic and Late Triassic mudstone from the principal hole, Prees 2C, which was cored from 32.92 to 651.32g¯m (corrected core depth scale). Core recovery was 99.7g¯% for Prees 2C. The ages of the recovered stratigraphy range from the Late Triassic (probably Rhaetian) to the Early Jurassic, Early Pliensbachian (Ibex Ammonoid Chronozone). All ammonoid chronozones have been identified for the drilled Early Jurassic strata. The full lithological succession comprises the Branscombe Mudstone and Blue Anchor formations of the Mercia Mudstone Group, the Westbury and Lilstock formations of the Penarth Group, and the Redcar Mudstone Formation of the Lias Group. A distinct interval of siltstone is recognized within the Late Sinemurian of the Redcar Mudstone Formation, and the name "Prees Siltstone Member"is proposed. Depositional environments range from playa lake in the Late Triassic to distal offshore marine in the Early Jurassic. Initial datasets compiled from the core include radiography, natural gamma ray, density, magnetic susceptibility, and X-ray fluorescence (XRF). A full suite of downhole logs was also run. Intervals of organic carbon enrichment occur in the Rhaetian (Late Triassic) Westbury Formation and in the earliest Hettangian and earliest Pliensbachian strata of the Redcar Mudstone Formation, where up to 4g¯% total organic carbon (TOC) is recorded. Other parts of the succession are generally organic-lean, containing less than 1g¯% TOC. Carbon-isotope values from bulk organic matter have also been determined, initially at a resolution of g1/4g¯1g¯m, and these provide the basis for detailed correlation between the Prees 2 succession and adjacent boreholes and Global Stratotype Section and Point (GSSP) outcrops. Multiple complementary studies are currently underway and preliminary results promise an astronomically calibrated biostratigraphy, magnetostratigraphy, and chemostratigraphy for the combined Prees and Mochras successions as well as insights into the dynamics of background processes and major palaeo-environmental changes

    Quantum tunneling of vortices in Bi-2212 with randomly oriented columnar defects

    No full text
    Ossandon, J.G. Department of Engineering Sciences, Universidad de Talca, Curicó, Chile

    Quantum constraints on technological superconductors

    No full text
    Ossandon, J.G. Department of Engineering Sciences, Universidad de Talca, Curicó, Chil
    corecore