38 research outputs found

    The role of hydrodynamics in structuring in situ ammonium uptake within a submerged macrophyte community

    Get PDF
    In low-nutrient, macrophyte-dominated coastal zones, benthic ammonium (NH4+) uptake may be influencedby the structural properties of plant canopies via their effect on near-bed hydrodynamics. Using adual-tracer (uranine and 15NH4+) method that does not require enclosures, we examined how this processaffects nutrient uptake rates within a tidally dominated, patchy Caulerpa prolifera–Cymodocea nodosalandscape. NH4+ uptake was determined by calculating tissue 15N excesses and correcting for 15N enrichmentas derived from uranine concentration. Vertical hydrodynamic profiles were measured in thedownstream flow direction from outside to inside of the C. nodosa bed by using an array of acousticDoppler velocimeters. The transition from a C. prolifera to a C. nodosa bed included a change in bothbenthic canopy properties (short and dense to tall and sparse) and sediment topography (0.2-m increasein water column depth) that resulted in an increase in longitudinal advection and turbulent diffusivitywithin the C. nodosa canopy between 0.5 and 1.5mfrom the leading edge. Vertical differences in canopywater exchange appeared to explain variations in uptake between biotic functional groups; however, noclear differences in longitudinal uptake were found. Using in situ labeling, this study demonstrated for thefirst time the role of hydrodynamics in structuring NH4+ uptake within an undisturbed, patchy macrophytelandscape

    Clinical phenotypes of acute heart failure based on signs and symptoms of perfusion and congestion at emergency department presentation and their relationship with patient management and outcomes

    Get PDF
    Objective To compare the clinical characteristics and outcomes of patients with acute heart failure (AHF) according to clinical profiles based on congestion and perfusion determined in the emergency department (ED). Methods and results Overall, 11 261 unselected AHF patients from 41 Spanish EDs were classified according to perfusion (normoperfusion = warm; hypoperfusion = cold) and congestion (not = dry; yes = wet). Baseline and decompensation characteristics were recorded as were the main wards to which patients were admitted. The primary outcome was 1-year all-cause mortality; secondary outcomes were need for hospitalisation during the index AHF event, in-hospital all-cause mortality, prolonged hospitalisation, 7-day post-discharge ED revisit for AHF and 30-day post-discharge rehospitalisation for AHF. A total of 8558 patients (76.0%) were warm+ wet, 1929 (17.1%) cold+ wet, 675 (6.0%) warm+ dry, and 99 (0.9%) cold+ dry; hypoperfused (cold) patients were more frequently admitted to intensive care units and geriatrics departments, and warm+ wet patients were discharged home without admission. The four phenotypes differed in most of the baseline and decompensation characteristics. The 1-year mortality was 30.8%, and compared to warm+ dry, the adjusted hazard ratios were significantly increased for cold+ wet (1.660; 95% confidence interval 1.400-1.968) and cold+ dry (1.672; 95% confidence interval 1.189-2.351). Hypoperfused (cold) phenotypes also showed higher rates of index episode hospitalisation and in-hospital mortality, while congestive (wet) phenotypes had a higher risk of prolonged hospitalisation but decreased risk of rehospitalisation. No differences were observed among phenotypes in ED revisit risk. Conclusions Bedside clinical evaluation of congestion and perfusion of AHF patients upon ED arrival and classification according to phenotypic profiles proposed by the latest European Society of Cardiology guidelines provide useful complementary information and help to rapidly predict patient outcomes shortly after ED patient arrival

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object

    Get PDF
    We report the observation of a compact binary coalescence involving a 22.2–24.3 Me black hole and a compact object with a mass of 2.50–2.67 Me (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s and Virgo’s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of - + 241 45 41 Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, - + 0.112 0.009 0.008, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to �0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries

    Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii Hornem.

    No full text
    The growth vs. irradiance response of the seagrass Zostera noltii from Cadiz Bay Natural Park (southwestern Spain) was characterised. Plants were exposed along 14 days to different light treatments (1%, 7%, 42% and 100% surface irradiance, SI), using shade screens in an outdoor mesocosm. Growth at 100% SI (1.6 mg DW plant(-1) day(-1)) was lower than that at 42% SI (2.4 mg DW plant(-1) day(-1)), suggesting photo inhibition. The minimum light requirement estimated was 0.8 mol photons m(-2) day(-1) (2% SI). Light availability affected the pattern of plant development and the overall plant growth. The contribution of the apical shoots to the aboveground production was nearly constant (c.a. 1.13 cm plant(-1) day(-1)) regardless of the light level (except at 1% SI). In contrast, recruitment and growth of lateral shoots arising from the main rhizome axes accounted for the observed differences in aboveground growth, Rhizome branching was only observed at 42% SI. The possibility of a light threshold for rhizome branching could explain the seasonality of shoot recruitment, as well as the observed decrease in shoot density along depth (or light) gradients in seagrass meadows. Carbon demands at low irradiances (1% and 7% SI) were partially met by mobilization of carbohydrate reserves (sucrose in belowground and starch in aboveground parts). Plant nitrogen content decreased with increasing light, especially in belowground parts, reaching critical levels for growth. [KEYWORDS: branching, C/N ratio, growth rate, light, nonstructural carbohydrates, plant architecture, seagrass

    Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii Hornem.

    No full text
    The growth vs. irradiance response of the seagrass Zostera noltii from Cadiz Bay Natural Park (southwestern Spain) was characterised. Plants were exposed along 14 days to different light treatments (1%, 7%, 42% and 100% surface irradiance, SI), using shade screens in an outdoor mesocosm. Growth at 100% SI (1.6 mg DW plant(-1) day(-1)) was lower than that at 42% SI (2.4 mg DW plant(-1) day(-1)), suggesting photo inhibition. The minimum light requirement estimated was 0.8 mol photons m(-2) day(-1) (2% SI). Light availability affected the pattern of plant development and the overall plant growth. The contribution of the apical shoots to the aboveground production was nearly constant (c.a. 1.13 cm plant(-1) day(-1)) regardless of the light level (except at 1% SI). In contrast, recruitment and growth of lateral shoots arising from the main rhizome axes accounted for the observed differences in aboveground growth, Rhizome branching was only observed at 42% SI. The possibility of a light threshold for rhizome branching could explain the seasonality of shoot recruitment, as well as the observed decrease in shoot density along depth (or light) gradients in seagrass meadows. Carbon demands at low irradiances (1% and 7% SI) were partially met by mobilization of carbohydrate reserves (sucrose in belowground and starch in aboveground parts). Plant nitrogen content decreased with increasing light, especially in belowground parts, reaching critical levels for growth. [KEYWORDS: branching, C/N ratio, growth rate, light, nonstructural carbohydrates, plant architecture, seagrass]

    ERRATUM to: Interaction between hydrodynamics and seagrass canopy structure: Spatially explicit effects on ammonium uptake rates

    No full text
    The hypotheses that (1) different seagrass morphologies may facilitate different nutrient uptake rates under similar hydrodynamic forcing and (2) this effect on nutrient uptake rates is spatially explicit, with the highest uptake rates at edges of patches, where currents and turbulence are highest, were examined under unidirectional flow conditions. Homogeneous patches (2 m long) of two seagrass species (Cymodocea nodosa and Zostera noltii) with contrasting shoot size and density were placed in a race track flume. 15NH4+ uptake and hydrodynamic properties along a gradient from outside to inside the patch were measured at a range of current velocities (0.05 to 0.3 m s-1). For each velocity we also determined the height and bending of the canopy. Water velocity affected the ammonium uptake rate of both species. The almost double uptake rates of C. nodosa shoots, compared to those of Z. noltii, were mainly attributed to a twofold difference in the within-canopy water flow (Qc, m3 s-1). Spatial patterns in canopy water flow were highly correlated with spatial patterns in NH4+ uptake, thereby explaining the 20% higher uptake rates at the leading edge of both canopies. The correlation between spatial patterns in canopy water flow and ammonium uptake rates underlines the role of canopy and patch configuration in determining the functioning of seagrass landscapes and their associated ecosystem services, such as nitrogen assimilation.
    corecore