1,075 research outputs found

    Aharonov-Bohm oscillations in a mesoscopic ring with a quantum dot

    Full text link
    We present an analysis of the Aharonov-Bohm oscillations for a mesoscopic ring with a quantum dot inserted in one of its arms. It is shown that microreversibility demands that the phase of the Aharonov-Bohm oscillations changes {\it abruptly} when a resonant level crosses the Fermi energy. We use the Friedel sum rule to discuss the conservation of the parity of the oscillations at different conductance peaks. Our predictions are illustrated with the help of a simple one channel model that permits the variation of the potential landscape along the ring.Comment: 11 pages, Revtex style, 3 figures under request. Submitted to Phys. Rev. B (rapid communications

    Elucidating Bacterial Gene Functions in the Plant Microbiome

    Get PDF
    There is a growing appreciation for the important roles microorganisms play in association with plants. Microorganisms are drawn to distinct plant surfaces by the nutrient-rich microenvironment, and in turn some of these colonizing microbes provide mutualistic benefits to their host. The development of plant probiotics to increase crop yield and provide plant resistance against biotic and abiotic stresses, while minimizing chemical inputs, would benefit from a deeper mechanistic understanding of plant-microbe interaction. Technological advances in molecular biology and high-throughput -omics provide stepping stones to the elucidation of critical microbiome gene functions that aid in improving plant performance. Here, we review -omics-based approaches that are propelling forward the current understanding of plant-associated bacterial gene functions, and describe how these technologies have helped unravel key bacterial genes and pathways that mediate pathogenic, beneficial, and commensal host interactions. Plants host large bacterial communities of importance to plant health and development. High-throughput -omics approaches have promoted elucidation of bacterial genes and pathways active at the plant-bacteria interface. We describe these methods and present functions performed by plant-associated bacterial genes that have been characterized by employing -omics methods

    Microscopic Theory of Josephson Mesoscopic Constrictions

    Full text link
    We present a microscopic theory for the d.c. Josephson effect in model mesoscopic constrictions. Our method is based on a non-equilibrium Green function formalism which allows for a self-consistent determination of the order parameter profile along the constriction. The various regimes defined by the different length scales (Fermi wavelength λF\lambda_F, coherence length ξ0\xi_0 and constriction length LCL_C) can be analyzed, including the case where all these lengths are comparable. For the case λF<~(LC,ξ0)\lambda_F \tilde{<} (L_C,\xi_0) phase oscillations with spatial period λF/2\lambda_F/2 can be observed. In the case of LC>ξ0L_C>\xi_0 solutions with a phase-slip center inside the constriction can be found, in agreement with previous phenomenological theories.Comment: 4 pages (RevTex 3.0), 3 postscript figures available upon request, 312456-C

    Universal Quantum Computation using Exchange Interactions and Teleportation of Single-Qubit Operations

    Get PDF
    We show how to construct a universal set of quantum logic gates using control over exchange interactions and single- and two-spin measurements only. Single-spin unitary operations are teleported instead of being executed directly, thus eliminating a major difficulty in the construction of several of the most promising proposals for solid-state quantum computation, such as spin-coupled quantum dots, donor-atom nuclear spins in silicon, and electrons on helium. Contrary to previous proposals dealing with this difficulty, our scheme requires no encoding redundancy. We also discuss an application to superconducting phase qubits.Comment: 4.5 pages, including 2 figure

    Effect of a Domain Wall on the Conductance Quantization in a Ferromagnetic Nanowire

    Full text link
    The effect of the domain wall (DW) on the conductance in a ballistic ferromagnetic nanowire (FMNW) is revisited by exploiting a specific perturbation theory which is effective for a thin DW; the thinness is often the case in currently interested conductance measurements on FMNWs. Including the Hund coupling between carrier spins and local spins in a DW, the conductance of a FMNW in the presence of a very thin DW is calculated within the Landauer-B\"{u}ttiker formalism. It is revealed that the conductance plateaus are modified significantly, and the switching of the quantization unit from e2/he^2/h to ``about 2e2/h2e^2/h'' is produced in a FMNW by the introduction of a thin DW. This accounts well for recent observations in a FMNW.Comment: 5 pages, 2 figures, Corrected typos and added reference

    The Magnetic Field of the Solar Corona from Pulsar Observations

    Full text link
    We present a novel experiment with the capacity to independently measure both the electron density and the magnetic field of the solar corona. We achieve this through measurement of the excess Faraday rotation due to propagation of the polarised emission from a number of pulsars through the magnetic field of the solar corona. This method yields independent measures of the integrated electron density, via dispersion of the pulsed signal and the magnetic field, via the amount of Faraday rotation. In principle this allows the determination of the integrated magnetic field through the solar corona along many lines of sight without any assumptions regarding the electron density distribution. We present a detection of an increase in the rotation measure of the pulsar J1801-2304 of approximately 160 \rad at an elongation of 0.95^\circ from the centre of the solar disk. This corresponds to a lower limit of the magnetic field strength along this line of sight of >393μG> 393\mu\mathrm{G}. The lack of precision in the integrated electron density measurement restricts this result to a limit, but application of coronal plasma models can further constrain this to approximately 20mG, along a path passing 2.5 solar radii from the solar limb. Which is consistent with predictions obtained using extensions to the Source Surface models published by Wilcox Solar ObservatoryComment: 16 pages, 4 figures (1 colour): Submitted to Solar Physic

    Which phase is measured in the mesoscopic Aharonov-Bohm interferometer?

    Full text link
    Mesoscopic solid state Aharonov-Bohm interferometers have been used to measure the "intrinsic" phase, αQD\alpha_{QD}, of the resonant quantum transmission amplitude through a quantum dot (QD). For a two-terminal "closed" interferometer, which conserves the electron current, Onsager's relations require that the measured phase shift β\beta only "jumps" between 0 and π\pi. Additional terminals open the interferometer but then β\beta depends on the details of the opening. Using a theoretical model, we present quantitative criteria (which can be tested experimentally) for β\beta to be equal to the desired αQD\alpha_{QD}: the "lossy" channels near the QD should have both a small transmission and a small reflection

    Radiative decays of light vector mesons in a quark level linear sigma model

    Get PDF
    We calculate the P0 to gamma gamma, V0 to P0 gamma and V0to V'0 gamma gamma decays in the framework of a U(3)xU(3) linear sigma model which includes constituent quarks. For the first two decays this approach improves results based on the anomalous Wess-Zumino term, with contributions due to SU(3) symmetry breaking and vector mixing. The phi to (omega,rho) gamma gamma decays are dominated by resonant eta' exchange . Our calculation for the later decays improves and update similar calculations in the -closely related- framework of vector meson dominance. We obtain BR(phi to rho gamma gamma)=2.5x10^{-5} and BR(phi to omega gamma gamma)=2.8x10^{-6} within the scope of the high-luminosity phi factories.Comment: 8 pages, submitted to Phys. Rev.
    corecore