70 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Design and Development of a Soft Actuator for a Robot Inspired by the Octopus Arm

    No full text
    The octopus provides roboticists with a good example of a completely compliant structure that can however reach good levels of stiffness and then exert forces on its environment. With no rigid structures, the octopus can deform its body and fit small apertures, its arms can bend in all directions and they can even elongate. The peculiar muscular Structure of the octopus arm, named muscular hydrostat, acts in fact as a modifiable skeleton, providing stiffness when and where needed. A key point in imitating this muscular structure is that the muscular hydrostat creates a sort of antagonistic mechanism between different muscle fibres. As a consequence, the arm movements are given by a combination of contractions of part of the muscles and passive stretching of the other muscles. On one side, this reduces the contraction requirements for the single muscle; on the other side, the contractile structure must be compliant and passively stretchable. The contractile units proposed here are built with EAP (Electro-Active Polymer) technology, with a particular geometry that increases the contraction range and force, by using soft materials. Contraction tests on prototypes of the contracting units show a very good similarity with a theoretical model and support the starting hypothesis on the possibility of building a robotic octopus-like arm based on an artificial muscular hydrostat

    Design and Development of a Soft Actuator for a Robot Inspired by the Octopus Arm

    No full text
    The octopus provides roboticists with a good example of a completely compliant structure that can however reach good levels of stiffness and then exert forces on its environment. With no rigid structures, the octopus can deform its body and fit small apertures, its arms can bend in all directions and they can even elongate. The peculiar muscular Structure of the octopus arm, named muscular hydrostat, acts in fact as a modifiable skeleton, providing stiffness when and where needed. A key point in imitating this muscular structure is that the muscular hydrostat creates a sort of antagonistic mechanism between different muscle fibres. As a consequence, the arm movements are given by a combination of contractions of part of the muscles and passive stretching of the other muscles. On one side, this reduces the contraction requirements for the single muscle; on the other side, the contractile structure must be compliant and passively stretchable. The contractile units proposed here are built with EAP (Electro-Active Polymer) technology, with a particular geometry that increases the contraction range and force, by using soft materials. Contraction tests on prototypes of the contracting units show a very good similarity with a theoretical model and support the starting hypothesis on the possibility of building a robotic octopus-like arm based on an artificial muscular hydrostat

    Functional foot symmetry and its relation to lower extremity physical performance in older adults: the Framingham Foot Study

    No full text
    BACKGROUND: While many studies use gait symmetry as a marker of healthy gait, the evidence that gait symmetry exists is limited. Because gait symmetry is thought to arise through laterality (i.e., limb preference) and affects gait retraining efforts, it is important to understand if symmetry exists during gait in older adults. Therefore, the purpose of this study was to evaluate foot and gait symmetry in the population-based Framingham Foot Study as well as to determine the effects of vertical force symmetry on physical performance measures. METHODS: Members of the Framingham Foot Study were included in this analysis (N=1333). Foot function and force data were collected using the Tekscan Matscan during self-selected gait, with symmetry evaluated using the symmetry index. The short physical performance battery (SPPB) measures of balance, chair stands and gait speed assessed lower extremity physical function. Participants were evaluated using quartiles of gait speed and foot symmetry to determine the effects of symmetry on lower extremity physical function. RESULTS: Individuals with faster gait speed displayed greater foot function asymmetry; individuals with −3.0% to −9.5% asymmetry in foot function performed better on the short physical performance battery (SPPB). Further, with aging, the degree of asymmetry was reduced. CONCLUSIONS: While this research suggests that a moderate degree of foot asymmetry is associated with better lower extremity function, the causes of vertical force asymmetry are unknown. Future studies should evaluate the causes of foot asymmetry and should track the changes in symmetry that occur with aging
    corecore