63 research outputs found

    Real-Time Data Driven Wildland Fire Modeling

    Full text link
    We are developing a wildland fire model based on semi-empirical relations that estimate the rate of spread of a surface fire and post-frontal heat release, coupled with WRF, the Weather Research and Forecasting atmospheric model. A level set method identifies the fire front. Data are assimilated using both amplitude and position corrections using a morphing ensemble Kalman filter. We will use thermal images of a fire for observations that will be compared to synthetic image based on the model state.Comment: 8 pages, 4 figures. ICCS 0

    Acute TNFα levels predict cognitive impairment 6-9 months after COVID-19 infection.

    Get PDF
    A neurocognitive phenotype of post-COVID-19 infection has recently been described that is characterized by a lack of awareness of memory impairment (i.e., anosognosia), altered functional connectivity in the brain's default mode and limbic networks, and an elevated monocyte count. However, the relationship between these cognitive and brain functional connectivity alterations in the chronic phase with the level of cytokines during the acute phase has yet to be identified. Determine whether acute cytokine type and levels is associated with anosognosia and functional patterns of brain connectivity 6-9 months after infection. We analyzed the predictive value of the concentration of acute cytokines (IL-1RA, IL-1β, IL-6, IL-8, IFNγ, G-CSF, GM-CSF) (cytokine panel by multiplex immunoassay) in the plasma of 39 patients (mean age 59 yrs, 38-78) in relation to their anosognosia scores for memory deficits via stepwise linear regression. Then, associations between the different cytokines and brain functional connectivity patterns were analyzed by MRI and multivariate partial least squares correlations for the whole group. Stepwise regression modeling allowed us to show that acute TNFα levels predicted (R <sup>2</sup> = 0.145; β = -0.38; p = .017) and were associated (r = -0.587; p < .001) with scores of anosognosia for memory deficits observed 6-9 months post-infection. Finally, high TNFα levels were associated with hippocampal, temporal pole, accumbens nucleus, amygdala, and cerebellum connectivity. Increased plasma TNFα levels in the acute phase of COVID-19 predict the presence of long-term anosognosia scores and changes in limbic system functional connectivity

    Brain functional connectivity alterations associated with neuropsychological performance 6-9 months following SARS-CoV-2 infection.

    Get PDF
    Neuropsychological deficits and brain damage following SARS-CoV-2 infection are not well understood. Then, 116 patients, with either severe, moderate, or mild disease in the acute phase underwent neuropsychological and olfactory tests, as well as completed psychiatric and respiratory questionnaires at 223 ± 42 days postinfection. Additionally, a subgroup of 50 patients underwent functional magnetic resonance imaging. Patients in the severe group displayed poorer verbal episodic memory performances, and moderate patients had reduced mental flexibility. Neuroimaging revealed patterns of hypofunctional and hyperfunctional connectivities in severe patients, while only hyperconnectivity patterns were observed for moderate. The default mode, somatosensory, dorsal attention, subcortical, and cerebellar networks were implicated. Partial least squares correlations analysis confirmed specific association between memory, executive functions performances and brain functional connectivity. The severity of the infection in the acute phase is a predictor of neuropsychological performance 6-9 months following SARS-CoV-2 infection. SARS-CoV-2 infection causes long-term memory and executive dysfunctions, related to large-scale functional brain connectivity alterations

    Mixtures of Similarly Acting Compounds in Daphnia magna: From Gene to Metabolite and Beyond

    No full text
    Daphnia are an important and widely studied model species in ecological and toxicological studies throughout the world and an official (OECD) recommended test organism. Their small size, wide distribution and easy growth conditions make this organism ideal for functional genomics based studies, including metabolic profiling and transcriptomics. In this study we used an integrated systems approach in which transcriptomic, metabolomic and energetic responses of juvenile (4 days old) daphnids were evaluated in response to exposure to two poly aromatic hydrocarbons (pyrene and fluoranthene) and binary mixtures thereof. In addition, these responses were linked to responses measured during chronic experiments (21 days) assessing survival, growth and reproductive traits. Custom Daphnia magna microarrays were used to assess transcriptomic changes. Hierarchical cluster analysis did not result in a clear distinction between the single compounds suggesting similar molecular modes of action. Cluster analysis with both the single compounds and the binary mixture treatments resulted in a separation of treatments based on differences in toxic ratios rather than component differences. Changes in the metabolic profiles of the organisms were investigated using Nuclear Magnetic Resonance Spectroscopy and Gas and Liquid Chromatography Mass Spectrometry. These multivariate metabolomic datasets were analyzed with Principal Components Analysis and Partial Least Squares Discriminant Analysis. The major metabolite changes responsible for the differences observed indicated a disturbance in aminosugar metabolism in all cases. The study demonstrates the potential of ‘omics’ to provide screening tools for monitoring of the freshwater environment — in invertebrate species — which is reasonably rapid, cost — effective and has the potential to greatly increase the amount of information obtained from aquatic toxicology testing
    corecore