292 research outputs found

    Supergauge interactions and electroweak baryogenesis

    Get PDF
    We present a complete treatment of the diffusion processes for supersymmetric electroweak baryogenesis that characterizes transport dynamics ahead of the phase transition bubble wall within the symmetric phase. In particular, we generalize existing approaches to distinguish between chemical potentials of particles and their superpartners. This allows us to test the assumption of superequilibrium (equal chemical potentials for particles and sparticles) that has usually been made in earlier studies. We show that in the Minimal Supersymmetric Standard Model, superequilibrium is generically maintained -- even in the absence of fast supergauge interactions -- due to the presence of Yukawa interactions. We provide both analytic arguments as well as illustrative numerical examples. We also extend the latter to regions where analytical approximations are not available since down-type Yukawa couplings or supergauge interactions only incompletely equilibrate. We further comment on cases of broken superequilibrium wherein a heavy superpartner decouples from the electroweak plasma, causing a kinematic bottleneck in the chain of equilibrating reactions. Such situations may be relevant for baryogenesis within extensions of the MSSM. We also provide a compendium of inputs required to characterize the symmetric phase transport dynamics.Comment: 49 pages, 9 figure

    The Inert Doublet Model and Inelastic Dark Matter

    Full text link
    The annual modulation observed by DAMA/NaI and DAMA/Libra may be interpreted in terms of elastic or inelastic scattering of dark matter particles. In this paper we confront these two scenarios within the framework of a very simple extension of the Standard Model, the Inert Doublet Model (IDM). In this model the dark matter candidate is a scalar, the lightest component of an extra Higgs doublet. We first revisit the case for the elastic scattering of a light scalar WIMP, M_DM~10 GeV, a scenario which requires that a fraction of events in DAMA are channelled. Second we consider the possibility of inelastic Dark Matter (iDM). This option is technically natural in the IDM, in the sense that the mass splitting between the lightest and next-to-lightest neutral scalars may be protected by a Peccei-Quinn (PQ) symmetry. We show that candidates with a mass M_DM between ~535 GeV and ~50 TeV may reproduce the DAMA data and have a cosmic abundance in agreement with WMAP. This range may be extended to candidates as light as ~50 GeV if we exploit the possibility that the approximate PQ symmetry is effectively conserved and that a primordial asymmetry in the dark sector may survive until freeze-out.Comment: 16 pages, 7 figures. v2: minor changes and discussion on the embedding in SO(10) added. v3: matches the published version in JCA

    Ultra-cold atoms in an optical cavity: two-mode laser locking to the cavity avoiding radiation pressure

    Full text link
    The combination of ultra-cold atomic clouds with the light fields of optical cavities provides a powerful model system for the development of new types of laser cooling and for studying cooperative phenomena. These experiments critically depend on the precise tuning of an incident pump laser with respect to a cavity resonance. Here, we present a simple and reliable experimental tuning scheme based on a two-mode laser spectrometer. The scheme uses a first laser for probing higher-order transversal modes of the cavity having an intensity minimum near the cavity's optical axis, where the atoms are confined by a magnetic trap. In this way the cavity resonance is observed without exposing the atoms to unwanted radiation pressure. A second laser, which is phase-locked to the first one and tuned close to a fundamental cavity mode drives the coherent atom-field dynamics.Comment: 7 pages, 7 figure

    CP violation in chargino decays in the MSSM

    Get PDF
    In the minimal supersymmetric standard model (MSSM) with complex parameters, supersymmetric loop effects can lead to \emph{CP} violation. We calculate the rate asymmetries of decays of charginos into the lightest neutralino and a WW boson on the basis of the most important loop contributions in the third generation squark sectors. It turns out that the \emph{CP} violating asymmetries can be a few per cent in typical regions of the parameter space of the MSSM. These processes would provide very promising channels for probing \emph{CP} violation in the MSSM at future high-energy colliders.Comment: 15 pages, 5 figures, LaTeX2

    Hadronic Total Cross-sections Through Soft Gluon Summation in Impact Parameter Space

    Get PDF
    The Bloch-Nordsieck model for the parton distribution of hadrons in impact parameter space, constructed using soft gluon summation, is investigated in detail. Its dependence upon the infrared structure of the strong coupling constant αs\alpha_s is discussed, both for finite as well as singular, but integrable, αs\alpha_s. The formalism is applied to the prediction of total proton-proton and proton-antiproton cross-sections, where screening, due to soft gluon emission from the initial valence quarks, becomes evident.Comment: 20 pages, Latex2e, input FEYNMAN,12 postscipt figures. Submitted to PR

    Super duality and irreducible characters of ortho-symplectic Lie superalgebras

    Full text link
    We formulate and establish a super duality which connects parabolic categories OO between the ortho-symplectic Lie superalgebras and classical Lie algebras of BCDBCD types. This provides a complete and conceptual solution of the irreducible character problem for the ortho-symplectic Lie superalgebras in a parabolic category OO, which includes all finite-dimensional irreducible modules, in terms of classical Kazhdan-Lusztig polynomials.Comment: 30 pages, Section 5 rewritten and shortene

    Black Hole Chromosphere at the LHC

    Full text link
    If the scale of quantum gravity is near a TeV, black holes will be copiously produced at the LHC. In this work we study the main properties of the light descendants of these black holes. We show that the emitted partons are closely spaced outside the horizon, and hence they do not fragment into hadrons in vacuum but more likely into a kind of quark-gluon plasma. Consequently, the thermal emission occurs far from the horizon, at a temperature characteristic of the QCD scale. We analyze the energy spectrum of the particles emerging from the "chromosphere", and find that the hard hadronic jets are almost entirely suppressed. They are replaced by an isotropic distribution of soft photons and hadrons, with hundreds of particles in the GeV range. This provides a new distinctive signature for black hole events at LHC.Comment: Incorporates changes made for the version to be published in Phys. Rev. D. Additional details provided on the effect of the chromosphere in cosmic ray shower

    Relic Neutralino Densities and Detection Rates with Nonuniversal Gaugino Masses

    Full text link
    We extend previous analyses on the interplay between nonuniversalities in the gaugino mass sector and the thermal relic densities of LSP neutralinos, in particular to the case of moderate to large tan beta. We introduce a set of parameters that generalizes the standard unified scenario to cover the complete allowed parameter space in the gaugino mass sector. We discuss the physical significance of the cosmologically preferred degree of degeneracy between charginos and the LSP and study the effect this degree of degeneracy has on the prospects for direct detection of relic neutralinos in the next round of dark matter detection experiments. Lastly, we compare the fine tuning required to achieve a satisfactory relic density with the case of universal gaugino masses, as in minimal supergravity, and find it to be of a similar magnitude. The sensitivity of quantifiable measures of fine-tuning on such factors as the gluino mass and top and bottom masses is also examined.Comment: Uses RevTeX; 14 pages, 16 figure

    Cosmological bounds on large extra dimensions from non-thermal production of Kaluza-Klein modes

    Full text link
    The existing cosmological constraints on theories with large extra dimensions rely on the thermal production of the Kaluza-Klein modes of gravitons and radions in the early Universe. Successful inflation and reheating, as well as baryogenesis, typically requires the existence of a TeV-scale field in the bulk, most notably the inflaton. The non-thermal production of KK modes with masses of order 100 GeV accompanying the inflaton decay sets the lower bounds on the fundamental scale M_*. For a 1 TeV inflaton, the late decay of these modes distort the successful predictions of Big Bang Nucleosynthesis unless M_*> 35, 13, 7, 5 and 3 TeV for 2, 3, 4, 5 and 6 extra dimensions, respectively. This improves the existing bounds from cosmology on M_* for 4, 5 and 6 extra dimensions. Even more stringent bounds are derived for a heavier inflaton.Comment: 17 pages, latex, 4 figure
    corecore