4 research outputs found
Saccharomyces Cerevisiae Transcriptional Reprograming Due To Bacterial Contamination During Industrial Scale Bioethanol Production
Background: The bioethanol production system used in Brazil is based on the fermentation of sucrose from sugarcane feedstock by highly adapted strains of the yeast Saccharomyces cerevisiae. Bacterial contaminants present in the distillery environment often produce yeast-bacteria cellular co-aggregation particles that resemble yeast-yeast cell adhesion (flocculation). The formation of such particles is undesirable because it slows the fermentation kinetics and reduces the overall bioethanol yield. Results: In this study, we investigated the molecular physiology of one of the main S. cerevisiae strains used in Brazilian bioethanol production, PE-2, under two contrasting conditions: typical fermentation, when most yeast cells are in suspension, and co-aggregated fermentation. The transcriptional profile of PE-2 was assessed by RNA-seq during industrial scale fed-batch fermentation. Comparative analysis between the two conditions revealed transcriptional profiles that were differentiated primarily by a deep gene repression in the co-aggregated samples. The data also indicated that Lactobacillus fermentum was likely the main bacterial species responsible for cellular co-aggregation and for the high levels of organic acids detected in the samples. Conclusions: Here, we report the high-resolution gene expression profiling of strain PE-2 during industrial-scale fermentations and the transcriptional reprograming observed under co-aggregation conditions. This dataset constitutes an important resource that can provide support for further development of this key yeast biocatalyst.141Basso, L.C., Amorim, H.V., Oliveira, A.J., Lopes, M.L., Yeast selection for fuel ethanol production in Brazil (2008) FEMS Yeast Res, 8, pp. 1155-1163Carvalho-Netto, O.V., Carazzolle, M.F., Rodrigues, A., Bragança, W.O., Costa, G.G.L., Argueso, J.L., A simple and effective set of PCR-based molecular markers for the monitoring of the Saccharomyces cerevisiae cell population during bioethanol fermentation (2013) J Biotechnol, 168, pp. 701-709Silva-Filho, E.A., Santos, S.K.B., Resende, A.D.M., Morais, J.O.F., Morais, M.A., Ardaillon Simões, D., Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting (2005) Antonie Van Leeuwenhoek, 88, pp. 13-23Argueso, J.L., Carazzolle, M.F., Mieczkowski, P.A., Duarte, F.M., Carvalho-Netto, O.V., Missawa, S.K., Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production (2009) Genome Res, 19, pp. 2258-2270Soares, E.V., Flocculation in Saccharomyces cerevisiae: a review (2011) J Appl Microbiol, 110, pp. 1-18Verstrepen, K.J., Klis, F.M., Flocculation, adhesion and biofilm formation in yeasts (2006) Mol Microbiol, 60, pp. 5-15Amorim, H.V., Lopes, M.L., Castro Oliveira, J.V., Buckeridge, M.S., Goldman, G.H., Scientific challenges of bioethanol production in Brazil (2011) Appl Microbiol Biotechnol, 91, pp. 1267-1275Abreu-Cavalheiro, A., Monteiro, G., Solving ethanol production problems with genetically modified yeast strains (2014) Braz J Microbiol, 44 (3), pp. 665-671Lucena, B.T.L., dos Santos, B.M., Moreira, J.L., Moreira, A.P.B., Nunes, A.C., Azevedo, V., Diversity of lactic acid bacteria of the bioethanol process (2010) BMC Microbiol, 10, p. 298Yokoya, F., Oliva-Neto, P., CaracterĂsticas da floculação de leveduras por Lactobacillus fermentum (1991) Brazilian J Microbiol, 22, pp. 12-16Tiukova, I., Eberhard, T., Passoth, V., Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae (2014) Biotechnol Appl Biochem, 61, pp. 40-44Pretzer, G., Snel, J., Molenaar, D., Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum (2005) J Bacteriol, 187, pp. 6128-6136Furukawa, S., Nojima, N., Nozaka, S., Hirayama, S., Satoh, A., Ogihara, H., Mutants of Lactobacillus plantarum ML11-11 deficient in co-aggregation with yeast exhibited reduced activities of mixed-species biofilm formation (2012) Biosci Biotechnol Biochem, 76, pp. 326-330Turner, M.S., Hafner, L.M., Walsh, T., Giffard, P.M., Peptide surface display and secretion using two LPXTG-containing surface proteins from Lactobacillus fermentum BR11 (2003) Appl Environ Microbiol, 69, pp. 5855-5863Hirayama, S., Furukawa, S., Ogihara, H., Morinaga, Y., Yeast mannan structure necessary for co-aggregation with Lactobacillus plantarum ML11-11 (2012) Biochem Biophys Res Commun, 419, pp. 652-655Rayner, J.C., Munro, S., Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae (1998) J Biol Chem, 273, pp. 26836-26843Abbott, D.A., Zelle, R.M., Pronk, J.T., Maris, A.J.A., Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges (2009) FEMS Yeast Res, 9, pp. 1123-1136Dorta, C., Oliva-Neto, P., Abreu-Neto, M.S., Nicolau-Junior, N., Nagashima, A.I., Synergism among lactic acid, sulfite, pH and ethanol in alcoholic fermentation of Saccharomyces cerevisiae (PE-2 and M-26) (2005) World J Microbiol Biotechnol, 22, pp. 177-182Kawahata, M., Masaki, K., Fujii, T., Iefuji, H., Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p (2006) FEMS Yeast Res, 6, pp. 924-936Thomas, K.C., Hynes, S.H., Ingledew, W.M., Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids (2002) Appl Environ Microbiol, 68, pp. 1616-1623Narendranath, N.V., Thomas, K.C., Ingledew, W.M., Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium (2001) J Ind Microbiol Biotechnol, 26, pp. 171-177Argueso, J.L., Pereira, G.A.G., Perspective: Indigenous sugarcane yeast strains as ideal biological platforms for the delivery of next generation biorefining technologies (2010) Int Sugar J, 112, pp. 86-89Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB (2007) Nucleic Acids Res, 35, pp. 7188-7196Bakker, B.M., Overkamp, K.M., Maris, A.J., Kötter, P., Luttik, M.A., Dijken, J.P., Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae (2001) FEMS Microbiol Rev, 25, pp. 15-37Nevoigt, E., Stahl, U., Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae (1997) FEMS Microbiol Rev, 21, pp. 231-241Ishida, N., Saitoh, S., Ohnishi, T., Tokuhiro, K., Nagamori, E., Kitamoto, K., Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid (2006) Appl Biochem Biotechnol, 131, pp. 795-807Oliva-Neto, P., Yokoya, F., Evaluation of bacterial contamination in a fed-batch alcoholic fermentation process (1994) World J Microbiol Biotechnol, 10, pp. 697-699Geng, F., Laurent, B.C., Roles of SWI/SNF and HATs throughout the dynamic transcription of a yeast glucose-repressible gene (2004) EMBO J, 23, pp. 127-137Ozcan, S., Vallier, L.G., Flick, J.S., Carlson, M., Johnston, M., Expression of the SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose (1997) Yeast, 13, pp. 127-137Basso, L.C., Basso, T.O., Rocha, S.N., Ethanol production in Brazil: the industrial process and its impact on yeast fermentation (2010) Biofuel Production - Recent Developments and Prospects, 1, pp. 85-100. , Bernardes MAS, editor. Rijeka: InTechPiper, P., Ortiz Calderon, C., Hatzixanthis, K., Mollapour, M., Weak acid adaptationthe stress response that confers yeasts with resistance to organic acid food preservatives (2001) Microbiology, 147, pp. 2635-2642Serrano, R., Kielland-Brandt, M.C., Fink, G.R., Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases (1986) Nature, 319, pp. 689-693Abbott, D.A., Knijnenburg, T.A., Poorter, L.M.I., Reinders, M.J.T., Pronk, J.T., Maris, A.J., Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae (2007) FEMS Yeast Res, 7, pp. 819-833Abbott, D.A., Suir, E., Maris, A.J.A., Pronk, J.T., Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae (2008) Appl Environ Microbiol, 74, pp. 5759-5768Fernandes, A.R., Mira, N.P., Vargas, R.C., Canelhas, I., Sá-Correia, I., Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes (2005) Biochem Biophys Res Commun, 337, pp. 95-103Mira, N.P., Becker, J.D., Sá-Correia, I., Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid (2010) OMICS, 14, pp. 587-601Mira, N.P., Palma, M., Guerreiro, J.F., Sá-Correia, I., Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid (2010) Microb Cell Fact, 9, p. 79Grant, C.M., MacIver, F.H., Dawes, I.W., Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae (1996) Curr Genet, 29, pp. 511-515Stephen, D.W., Jamieson, D.J., Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae (1996) FEMS Microbiol Lett, 141, pp. 207-212Grant, C.M., Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions (2001) Mol Microbiol, 39, pp. 533-541Wheeler, G.L., Trotter, E.W., Dawes, I.W., Grant, C.M., Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors (2003) J Biol Chem, 278, pp. 49920-49928Dormer, U.H., Westwater, J., McLaren, N.F., Kent, N.A., Mellor, J., Jamieson, D.J., Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network (2000) J Biol Chem, 275, pp. 32611-32616Abbott, D.A., Suir, E., Duong, G.-H., Hulster, E., Pronk, J.T., Maris, A.J., Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae (2009) Appl Environ Microbiol, 75, pp. 2320-2325Ludovico, P., Rodrigues, F., Almeida, A., Silva, M.T., Barrientos, A., CĂ´rte-Real, M., Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae (2002) Mol Biol Cell, 13, pp. 2598-2606RodrĂguez-Navarro, S., Llorente, B., RodrĂguez-Manzaneque, M.T., Ramne, A., Uber, G., Marchesan, D., Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6 (2002) Yeast, 19, pp. 1261-1276Padilla, P.A., Fuge, E.K., Crawford, M.E., Errett, A., Werner-Washburne, M., The highly conserved, coregulated SNO and SNZ gene families in Saccharomyces cerevisiae respond to nutrient limitation (1998) J Bacteriol, 180, pp. 5718-5726Ehrenshaft, M., Bilski, P., Li, M.Y., Chignell, C.F., Daub, M.E., A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis (1999) Proc Natl Acad Sci U S A, 96, pp. 9374-9378Stambuk, B.U., Dunn, B., Alves, S.L., Duval, E.H., Sherlock, G., Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis (2009) Genome Res, 19, pp. 2271-2278Hoffman, C.S., Preparation of yeast DNA (2001) Current Protocols in Molecular Biology, pp. 13-21. , Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, editors. New York: John Wiley & SonsCollart, M.A., Oliviero, S., Preparation of Yeast RNA (2001) Current Protocols in Molecular Biology, pp. 13-22. , Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, editors. New York: John Wiley & SonsLi, R., Li, Y., Kristiansen, K., Wang, J., SOAP: short oligonucleotide alignment program (2008) Bioinformatics, 24, pp. 713-714Wang, L., Feng, Z., Wang, X., Wang, X., Zhang, X., DEGseq: an R package for identifying differentially expressed genes from RNA-seq data (2010) Bioinformatics, 26, pp. 136-138Mortazavi, A., Williams, B.A., Mccue, K., Schaeffer, L., Wold, B., Mapping and quantifying mammalian transcriptomes by RNA-Seq (2008) Nat Methods, 5, pp. 1-8Sharan, R., Maron-Katz, A., Shamir, R., CLICK and EXPANDER: a system for clustering and visualizing gene expression data (2003) Bioinformatics, 19, pp. 1787-1799Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method (2001) Methods, 25, pp. 402-408Cui, P., Lin, Q., Ding, F., Xin, C., Gong, W., Zhang, L., A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing (2010) Genomics, 96, pp. 259-265Heuer, H., Krsek, M., Baker, P., Smalla, K., Wellington, E.M., Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients (1997) Appl Environ Microbiol, 63, pp. 3233-324