1,889 research outputs found
Geometric creation of quantum vorticity
We consider superfluidity and quantum vorticity in rotating spacetimes. The
system is described by a complex scalar satisfying a nonlinear Klein-Gordon equation.
Rotation terms are identified and found to lead to the transfer of angular momentum of
the spacetime to the scalar field. The scalar field responds by rotating, physically behaving
as a superfluid, through the creation of quantized vortices. We demonstrate the vortex
nucleation through numerical simulatio
Electron-phonon vertex in the two-dimensional one-band Hubbard model
Using quantum Monte Carlo techniques, we study the effects of electronic
correlations on the effective electron-phonon (el-ph) coupling in a
two-dimensional one-band Hubbard model. We consider a momentum-independent bare
ionic el-ph coupling. In the weak- and intermediate-correlation regimes, we
find that the on-site Coulomb interaction acts to effectively suppress the
ionic el-ph coupling at all electron- and phonon- momenta. In this regime, our
numerical simulations are in good agreement with the results of perturbation
theory to order . However, entering the strong-correlation regime, we find
that the forward scattering process stops decreasing and begins to
substantially increase as a function of , leading to an effective el-ph
coupling which is peaked in the forward direction. Whereas at weak and
intermediate Coulomb interactions, screening is the dominant correlation effect
suppressing the el-ph coupling, at larger values irreducible vertex
corrections become more important and give rise to this increase. These vertex
corrections depend crucially on the renormalized electronic structure of the
strongly correlated system.Comment: 5 pages, 4 eps-figures, minor change
Model of a fluid at small and large length scales and the hydrophobic effect
We present a statistical field theory to describe large length scale effects
induced by solutes in a cold and otherwise placid liquid. The theory divides
space into a cubic grid of cells. The side length of each cell is of the order
of the bulk correlation length of the bulk liquid. Large length scale states of
the cells are specified with an Ising variable. Finer length scale effects are
described with a Gaussian field, with mean and variance affected by both the
large length scale field and by the constraints imposed by solutes. In the
absence of solutes and corresponding constraints, integration over the Gaussian
field yields an effective lattice gas Hamiltonian for the large length scale
field. In the presence of solutes, the integration adds additional terms to
this Hamiltonian. We identify these terms analytically. They can provoke large
length scale effects, such as the formation of interfaces and depletion layers.
We apply our theory to compute the reversible work to form a bubble in liquid
water, as a function of the bubble radius. Comparison with molecular simulation
results for the same function indicates that the theory is reasonably accurate.
Importantly, simulating the large length scale field involves binary arithmetic
only. It thus provides a computationally convenient scheme to incorporate
explicit solvent dynamics and structure in simulation studies of large
molecular assemblies
CP violation in in the model III 2HDM
We have calculated the Wilson coefficients (i=1,2) in the
renormalization scheme in the model III 2HDM. Using the obtained
Wilson coefficients, we have analyzed the CP violation in decays (q=d,s) in the model. The CP asymmetry, , depends on the
parameters of models and in can be as large as 40% and
35% for and respectively. It can reach 4% for decays.
Because in SM CP violation is smaller than or equal to O() which is
unobservably small, an observation of CP asymmetry in the decays would unambiguously signal the existence of new physics.Comment: revtex4, 16 pages, 7 figure
Statistical nature of non-Gaussianity from cubic order primordial perturbations: CMB map simulations and genus statistic
We simulate CMB maps including non-Gaussianity arising from cubic order
perturbations of the primordial gravitational potential, characterized by the
non-linearity parameter . The maps are used to study the characteristic
nature of the resulting non-Gaussian temperature fluctuations. We measure the
genus and investigate how it deviates from Gaussian shape as a function of
and smoothing scale. We find that the deviation of the non-Gaussian
genus curve from the Gaussian one has an antisymmetric, sine function like
shape, implying more hot and more cold spots for and less of both
for . The deviation increases linearly with and also
exhibits mild increase as the smoothing scale increases. We further study other
statistics derived from the genus, namely, the number of hot spots, the number
of cold spots, combined number of hot and cold spots and the slope of the genus
curve at mean temperature fluctuation. We find that these observables carry
signatures of that are clearly distinct from the quadratic order
perturbations, encoded in the parameter . Hence they can be very useful
tools for distinguishing not only between non-Gaussian temperature fluctuations
and Gaussian ones but also between and type
non-Gaussianities.Comment: 18+1 page
Time varying in N=8 extended Supergravity
There has been some evidence that the fine structure "constant" may
vary with time. We point out that this variation can be described by a scalar
field in some supergravity theory in our toy model, for instance, the N=8
extended supergravity in four dimensions which can be accommodated in M-theory.Comment: 5 pages,1 figures. Accepted for publication in JHE
Backward pion-nucleon scattering
A global analysis of the world data on differential cross sections and
polarization asymmetries of backward pion-nucleon scattering for invariant
collision energies above 3 GeV is performed in a Regge model. Including the
, , and trajectories, we
reproduce both angular distributions and polarization data for small values of
the Mandelstam variable , in contrast to previous analyses. The model
amplitude is used to obtain evidence for baryon resonances with mass below 3
GeV. Our analysis suggests a resonance with a mass of 2.83 GeV as
member of the trajectory from the corresponding Chew-Frautschi
plot.Comment: 12 pages, 16 figure
- …