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1. INTRODUCTION

The stable region for the two delay differential equations
x(O+ax(t)y+bx(t—r)+cx(t—0)=0, r20,620,120 (1.1)

has been investigated by many authors [1,3-9], but has not yet been
globally solved. The numerical results [3] show that the boundary of a
stable region may be a very complicated curve which has infinitely many
kinks. So an interesting question is: What is the asymptotical behavior of
the boundary of a stable region? Can it become chaotic? In this paper, we
will give a complete geometrical description of the stable region® for the
equations (1.1) in the r—o plane. In particular, we prove that:

(1) If a stable region is unbounded, then its boundary will approach
a straight line parallel to the r-axis or ¢-axis as r + ¢ — 0.

(i1) If a half line in the first quadrant of the r—¢ plane contains an
unstable point, then the intersection of this line and the boundary of the
stable region contains at most finitely many points and eventually the half
line leaves the stable region.

* Research partially supported by the National Science Foundation DMS-8507056 and
DARPA 7T0NANB8H0860.

! Here the stable region is defined as a maximal connected set Dc< [0, oo} x [0, o0)
which contains the origin (0, 0) such that for each (r, 6)e D the zero solution of (1.1) is
asymptotically stable. In this paper, we do not discuss the possibility of existence of any other
stable region in [0, c0) x [0, oo} which is disjoint with D. We conjecture that there is only one
connected stable region whenever it exists.
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2. PRELIMINARY

It is clear that the investigation of the stable region will lead to studying
the location of zeros of the characteristic equation of (1.1)

p(A, r, o) E At atbe ¥ 4 ce i =0. Q.1
And, in particular, the study of the equation
pliv,r,a)=iv+a+be ™ +ce " =0,v=0 22)

will play a key role.

Equation (2.2) implicitly defines a family of curves (#(v), o(v)) in the r-o
plane which may have very complicated structures. But from the viewpoint
of stability analysis, only those curves such that each point on these curves
can be connected to the origin by a continuous path in the stable region
will be of interest. Furthermore, since ¢ (8 R) is a periodic function, as
a first step, we will study Eq.(2.2) under the restriction of 0 <vr <2n,
0<vo<2n

First, by using El'sgol'ts’ D-partitions mathed it is not difficult to see
that, if b <0, ¢ <0 are fixed, then, for all r >0, ¢ >0, the zero solution of
(1.1) is asymptotically stable if a> |b+ c|, stable but not asymptotically
stable if a=|b+ ¢| and unstable if a <|b+ ¢|. Therefore, without loss of
generality, we suppose b>0 and divide the relation of the coefficients a, b
and ¢ into the following cases according to their positions in the real line
(see Fig. 2.1):

I. bt+a=|c|] (cxa=|b] can be considered as this case if we
exchange r and o).
. b+az|c|>b—a
III. —c<a+b<e, c>0.
IV. a+b+c¢<0.

L a-b atb
) -l.cl ¢ icl
. ,ab Lo
~icl ) icl
- ) a+b
-c c
. a+b
-C
FIGURE 2.1
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Case IV is simple. We have
PrOPOSITION 2.1. If a+b+c<0, then, for all delays r=0, 620, the

zero solution of (1.1) is unstable.

The proof of Proposition 2.1 is trivial.

In this paper, we will give a detailed analysis only for the case of
b+ a>|c| and then, by using the idea developed in discussion of this case,
we can describe the stable regions for the other cases.

3. ANALYSIS OF THE STABLE REGION

Throughout this section we suppose b+a>|c|. Let C denote the
complex plane and

Ig={zeC: |zl =|el}.
For r>0, f,: [0,2n] — C is defined by

f,(s)=i::+a+be"‘
and for r>0, 60 =0 let
A(s, r, a)= f.(s)+ce 7 5€ [0, 2n]. (3.1)

It is apparent that (2.2) has a solution v € [0, 2n/r) for some r >0, 6 <0
if and only if 4(s,r,c)=0 for some se[0,2n) and if and only if
£([0,2r))N T, # . So we will study the equivalent A(s, r, 6) =0 rather
than Eq. (2.2).

LEMMA 3.1. For each fixed r>0, f,([0,2rn]) is a simple and smooth
curve in C and

follm, 2n])n Ty = .

Proof. The first conclusion follows from the fact that f,: [0,2n] -» C is
one-to-one and differentiable. Now for se [n, 2n], we have

2
lﬁ(s)lzz(;—bsins) + (a+ b cos s)*
2 2sh .
=%-—§—sms+a2+b2+2abcoss
>a*—2lal b+ b*=(b—|a|)*=|c|.

That is, f,([n, 2n])n 1", = .
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Now let r'>r">0 and se (0, n]. It is clear that
Re /. (s)=Re f,.(s) and Im £, (s)<Im f,.(s).

This means that the curve f,(-) moves downwards strictly as r increases
~ (see Fig. 3.1). Note that

/[0, n])mrm:Q

for sufficiently small r and large r, and, therefore, the following theorem is
reasonable (see Fig. 3.2).

THEOREM 3.2. Ifb+a>|c|,a—b< —|c|, then there are 0 <ry<r, < 0
and s¥, s¥ € (0, n) such that

(i) S0 2]y = {/.(s¥)}, i=0,2.
(1) fAL0, n])nTy=, re[0,re) U (ry, ).
(iii) There are continuous functions s, s,: [ro, r,] — (0, n) such that

si(r)=s,(r;)=sY, i=0,2
$2(r)>s,(r), re(re, ry)

and

FAL0, ey Ly = { £ (s,(r)), fo(s2(r D)}, re(rg, ri).

a+b

r large

FIGURE 3.1
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fro (s%)

FIGURE 3.2

We prove this theorem in the Appendix.
With the aid of Theorem 3.2, we are able to characterize the curve (r, o)
determined by Eq. (3.1).

IA. Suppose b+ a>c>0.
It is clear that there is a unique r,e(ry,r,) (r,=

tan '(—/b*—(a+c)*/(a+c))//b>—(a+¢)?) such that
fr,(sz(ﬁ)): -, (Sz(r1)="|\/ bz_(a_’_c)z)‘

Now for each re (rg, r,), let p,= f,(s,(r)), i= 1, 2, and 6,(r) € [0, 27) be the
angles from the negative real axis to the rays starting at the origin and
passing through p,, /=1,2, in the clockwise sense respectively (see
Fig. 3.3). It is clear that 6,(r) is continuous on [r, r,], 8,(r) is continuous
on [ro,r;]\{r,} and it has a jump at r=r, with

lim 0,(r)=0, lim 0,(r)=2n (3.2)

and
0,(r)y<8,(r), re(rg, ry).
Now let
rf.(r)

o,(r)= 5.r)

i=1,2
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, a+b

FIGURE 3.3

Then we have
A(5.(r). 7. 0,(r)) = £,(5,(1) + ce~ o4r) o0
= —ce " 4 ce =0,

Conversely, if

SC
A(s, r,0)=0, 0<s<2m 0<—<2m,
,
then necessarily

(S, r, 0) = (sl (r)’ r, o (r)) (Or (Sz(r), r, 0'2(")).

If we let r vary from rg to r,, then there are two branches o, (r), o,(r)
with
o,(r)=0,(r)), i=0,2,

_rly(r) _rBy(r) r8.(r)
=300 50 S5

It is obvious that a,(r) is continuous on [rg, r,] and from (3.2) it follows
that o,(r) is continuous on [ry, r,) v (r,, r,] and

=a,(r), re(rg, ry). (3.3)

. ) . 6,(n)r 2mr, 2n
lim o,(r)=0, lim o,(r)= lim — = = .
ron Jm oa(n=lm = s2(r))  /bP—(a+c)?
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Thus, we have curves g, (r) and o,(r) shown in Fig. 3.4 (but we do not
mean to imply that a,(r)>0,(¥) on (r,, r;)).

IB. Suppose b+a>|c|, ¢ <O0.
In this case, if we again let r,=tan '(— /b — (a+c)*/(a+))/

b>—(a+ )% then we have s,(r,)=r, \/bz— (a+¢)? and
Solsi(r)))=—c

Furthermore, for each re (ry, ry), let 8,(r)e [0, 2n] be the angles from the
positive real axis to the rays starting at the origin and passing through
f.(s:Ar)), i=1,2 in the clockwise sense (see Fig. 3.5) and o,(r)=
rB,(r)/s,(r), i=1, 2, respectively. By using analysis similar to case 1A, the
curves o,(r) are shown as in Fig. 3.6 where

o, (r)=0,(r) i=0,2

o,(r) is continuous on [ry, r,]. a,(r) is continuous on [ry, r,]\{r;} and
it has a jump at r, with

2
lim o,(r)=0, lim 0,(r)=—*% = 2n

ror, r oo sl(rl)_ /bz_(a+c)2

and
o (r)>a,(r), re(rg, r).

-
-y

FiGURE 3.4
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fr1

a-b C -C a+b

FIGURE 3.5

In both of the cases 1A and IB, if we periodically extend o,(r) by
ol(r)=0,(r)+2nnr/s(r), relry, r,], i=1,2, then the boundary of the
stable region D (see first page for the definition of D) consists of the family
{a(r), i=1,2, relry, ry]}7_, which are bounded on the left by the line
r=rq (see Figs. 3.7 and 3.8). Clearly, it is important to know how the curves
a’(r) change as r varies near r, because it might be possible that the curves
a’(r) near r, become chaotic as n — o0.

FIGURE 3.6
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We now turn to study the properties of o/(r) for r close to r,.
First we try to reparameterize the curves (r, o,(r)) for r near r, as
(r(s), o(s)). We note that

A(s, r,0)=0
if and only if
fi(s)+ce ?=0 (34)

with ¢ = 0r/s. We may separate the real and imaginary parts of (3.4) to
obtain the equivalent system

Fis,r,0) &2 _bsins—csin8=0
r

G(s,r,B)d=°fa+bcoss+ccose=0.

Let Oy=s5f0,/ro (here o,=0a,(ry)=0,(r,) and s§ is as defined in
Theorem 3.2). It follows from the definition of s, r,, and g, that

F(s&, rg, 00) =G(sg, ry, 05) =0,

and
5§
3(F. G) _| == —ccos
6(r,9) (s8.r0.60) ()0 —csinﬂo ’

which is invertible since s¥/r3#0 and csinf,#0. Then the implicit
function theorem yields that there are a neighborhood Ix Ux V< R? of
(s¥,ro,8,) and continuously differentiable functions r: I U, §: 1>V
such that

r(s¢)=ro,  0(s&) =10, (3.5)
F(s, r(s), 8(s)) = G(s, r(s), 8(s)) =0, sel, (3.6)

and for (s,r,8)eIxUxV,
F(s,r,8)=G(s,r,0)=0 if and only if r=r(s), 6=0(s). (3.7)

Now (3.6) is equivalent to

fro(8) = —ce ), sel

(See Fig. 3.9).
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fr(s)® tro(®)

fr (32)(3)

a-b , _a+b

FIGURE 3.9

Since f, (-) is tangent to the circle I, at —ce ® and f,(-) moves
upwards strictly as r decreases (see Fig. 3.10), thus for parameter values s,
S5, 81, 57,

r(sy)>r(sp) zr(s§)=r, if sy>s)>2sf (3.8)
and
r(sy)>r(s{) =z r(s&) if 57 <sy<sE. (3.9)

This implies that r(s) is monotone decreasing for s <s§ and monotone
increasing for s = s¥. So we have

‘s {<0 if s<s,

3.
>0 if s>sd. (3.10)

Furthermore, let s,(r), s,(r), 8,(r), 0,(r) be the functions defined in
Theorem 3.2 and IA. Then for se/ we have

Srs(5;(r(s))) = —ce N j=1,2. (3.11)

It is clear that 5,(r(s)), j=1, 2 is continuous with respect to s and

Sj(r(s(f))=sj(ro)=56*,j= 1, 2.
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0? (]
o2
g,in

02 w

FIGURE 3.10

Therefore, there is a neighborhood I' = I of s such that
s{r(sNel, j=1,2, sl
It follows from (3.6), (3.11) that
r(s)=r(s;(r(s))), sel,j=1,2 (3.12)

Now from (3.8) and (3.9) we see that for s#s&, r(s}>r(s&)=r,. So
53(r(s))>s,(r(s)), seI'\{s¢}. It now follows from (3.8), (3.9) and (3.12)
that

$2(r(8))> 5§ >s,(r(s)), se I'\{sg }.
By using (3.12) again we arrive at

_ {s1(r(s)) if s<sg,
= {52("(5)) (3:13)

if s>sk.
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Now if we set a(s)=0(s) r(s)/s, then, for se ', s<s¥, we have

2nmr(s)  B(s) r(s) 2nmr(s)

= o) T e
=01 (r(s)) + 2 = a0s)
and, for sel’, s=sf,
o(s)+ nmrls) o, (r(s))+ 2nrls) a5 (r(s)).
52 (r(s)

(3.14)

(3.15)

Note that F(s§)=0, r(s§)>0 and &(s) is continuous at s§, so there are

£>0 and 6 >0, m>0 such that

|F(s) s| <r(s)—9, |6(s)| <m, |F(s)| <m, se[sF—e sf+e]lcT.

(3.16)

Furthermore, for se [s§ —¢, s§), we have r(s)e (ry, r(s¥ —¢)]. It follows

from (3.14) that

2nmnr(s)
da;‘(r)__d(a(s)+ P )/ds

dr dr (S )/ ds se[s§ —e.s3)
_ 6(s) + 2nn(F(s) s — r(s))/s’
- #(s)
2nmd
=R
P - 400
m

as n — oo uniformly for re (ry, r(s§ —¢)].
Similarly, we have
do’(r)
2V,

— as n— o
dr

uniformly for r e (r,, r(s +¢)] (see Fig. 3.10).

That is, the curves ¢7(r) and o5(r) for r near r, almost become a straight
line as n becomes sufficiently large. As an immediate consequence we have

THEOREM 3.3. Under the assumption of b>0, b+ a>|c|, the boundary
of stable region approaches the straight line r =r,. Furthermore, the up half

strip {(r, 6); 0<r<ry, 020} belongs to the stable region.

As a corollary of Theorem 3.3 we have
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THEOREM 3.4. Let Ic [0, oc)x [0, 00) be a half line. If I contains a point
(r',6')€ [0, 0)x [0, 0 \D (where D is the stable region), then I intersects
éD in at most finitely many points and eventually leaves the stable region D.

Remark. Only the line L:r =r, intersects 4D at infinitely many points.

By using the same argument as developed in the previous sections we are
able to depict geometrically the stable region for all other cases as follows.
The detailed analysis will be given in a separated paper.

IC.
a+b=c,a—b< —c, c>0 a+b>c,a~b=—c, c>0
g
L
y
I r,
b— . /bla+b)
Fo=—Y—F——
—2ab
a=0,b=c>0
g
-~
1 o
2b 7
<

ol-
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ID.

atb=|cl,a—b<—lc|, <0 a+b>|cl,a—b=—|c|, <O

L~
L~ stable
b
- not asy. st.
L~
A
r
To r, I’Z
ITA.
at+b>c>a—b, c>0 a+b=c>a—b, c>0
o o
/
4 ]
i ' S
J/ ,/ e . \/ ,
h ! ," ! /I\ A\ ’A\ /,
it I\ /, ) v I' \\ e
1 ~
\ r»: ‘/*, Ve { \‘~ /’/
s, ol NN
A /
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c<Q at+b=|c|>a—p,

1138

c>a+b> —¢,

c>0 C>a+b= —¢, c>0

O

not asy. st.
b~

£
b

c<0
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APPENDIX

This appendix is devoted to proving Theorem 3.2.
Let f, be defined as in Section 3 and let

glr, ») Z (£, (»)1> = %)
= y>—2brysin y+2abr’cos y + ri(a’+ b*—c?).  (Al)
Then

[0, z])n I # & if and only if g(r, y) =0 has a solution
ye [0, ]

Before proceeding to the proof, we need a few lemmas.

LemMa 1. Suppose H:[0,n] — R is twice differentiable and H(0) >0,
H(n)>0. If H"(y) has at most one zero in (0, n), then H(y) has at most two
zeros in [0, m].

Proof. Since H”"(y) has at most one zero in (0, n), H'(y) has at most
two zeros in (0, n). If the lemma were false, then H(y) would have at least
three zeros in (0, #). Let y; < y, < y, be the first three successive zeros,
then H’'(y) must have two zeros pf, y¥ such that y¥e(y,, y,),
y¥e(y,, y3) Thus H'(p)#0, ye(0, yF)u (y¥, n), for H'(y) has at most
two zeros in (0, m). That is, H(y) is strictly monotone on (0, y¥) and
(¥2, y), respectively. Since H(0)>0, H(y,)=0 and y, < y¥ it follows that
H(y¥)<0. Similarly, we have H(y¥)<0. Note that H(y,)=0 and
yo€(yE, v¥), so H(y) is not monotone in (yf¥, y¥). That is, H'(y) has a
zero in (y¥, y¥). This is a contradiction and Lemma 1 follows.

We let g, (r, y)=0g(r, y)/0y, and for integer k > 2, let

d*g(r, ¥)
(k) =502
g, (r,y) o

LEMMA 2. For each fixed r >0, g'?(r, y) has at most one zero in (0, n).

Proof. We have
g,(r, y)=2y—(2br+2abr’)sin y — 2bry cos y
g(r, y)=2—-2br(2+ar) cos y + 2brysin y (A2)
g)(r, y)=>br(6+2ar)sin y +2brycos y (A3)

(i) Suppose 2+ar>0, then g'?(r,y)>0, ye[n/2,n]. Since
2+ar>0 implies 6+2ar>0, it follows from (A3) that g’(r, y)>0,
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y€ (0, n/2]. That is, g{*'(r, y) is strictly increasing on [0, n/2]. Therefore,
g'2(r, ) has at most one zero in (0, 7).

(1) Suppose 2+ar<0, 6+2ar>0. In this case (A2) yields that
g 2(r, y)>0, ye [0,7/2] and

g\ (r, y)=br(8 + 2ar) cos y — 2bry sin y <0, ye (g n].

It follows that g'¥(r, y) is strictly decreasing on (n/2, n]. Since g{*(r, n/2)
=rb(6 + 2ar)>0 and g'’(r, n) = —2brn <0, there is a unique y* € (n/2, )
such that

gd(r, y)>0, ye [g y*)

g2, ) <0,  ye(y*,nl

Hence g!*'(r, y)> 0 for ye [0, y*] and g'(r, y) is strictly decreasing for
ye(y*, n]. Therefore, g'?(r, y) has at most one zero in [0, n].
(iii) Suppose 6+2ar<O0. In this case we have g'¥(r, y)>0,
y€[0,7/2] and g(r, y) <0, ye(n/2, n). So it is clear that g{*(r, y) has
at most one zero in (0, 7).

Proof of Theorem 3.2. First, by the assumption of Theorem 3.2, we can
casily check that, for each r >0,

g(r,0)>0, g(r, n)>0.

So it follows from Lemma ! and Lemma 2 that g(r, -) has at most two
zeros in [0, n]. If we look at the function f, (-), it is clear that f,(-) is above
I, if r is sufficiently small and below I\, if r is large enough. Since f,(-)
moves downward strictly as r increases, there are exactly two values r, and
ry such that £, ([0, a])n T, =, re(0,ro)u(ry, 0)and f,(-) (i=0,2)is
tangential to I",. That is, g(r;,-) is tangential to the y-axis. Since g, (r;, y)
has at most two zeros in (0, ), g(r;,-) is tangential to the y-axis at exactly
one point. Hence, there is unique s;€ (0, n) such that

fr.([o’ n])m rlcl = {fr,(si)}’ l:07 2

Furthermore, by the definition of r,, r, and the properties of f,(-), it is
obvious that for each re(rgy, r;), f,([0, n]) intersects 1", at least at two
points. That is, g(r, ¥) has at least two zeros in [0, n]. But, since g(r, y)
has at most two zeros in (0, n] for each r >0, we deduce that g(r, y) has

409/178/2-5
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[
s

xactly two zeros in [0,n]. Equivalently, there are s,(r), s,(r),
2(r)>s,(r) such that

LAL0, a) Ty = {f.(s:(1), £,(52(r)}}, rE(ro, 12)-

The continuity of s;(r) easily follows from the continuity of g(r, y).

The proof of Theorem 3.2 is completed.

ACKNOWLEDGMENT

We thank Professor K. L. Cooke for carefully reading this paper and his very useful

comments.

2.

3
4.

5.

6.

REFERENCES

. R. BELLMAN aND K. L. Cookg, “Differential-Difference Equations,” Academic Press,

New York, 1963.

L. E. EL'sGoL’TS aND S. B. Norkin, “Introduction to the Theory and Application of

Differential Equations with Deviating Arguments,” Academic Press, New York, 1973.

J. K. HaLg, “Lectures in Applied Mathematics,” Vol. 17, pp. 157-185, 1979.

J. M. MaHaFFy, “Geometry of the Stability Region for a Differential Equation with Two

Delays,” Preliminary report in AMS meeting at Claremont, November, 1988.

C. MARRIOTT, R. VaLLEE, AND C. DELISLE, Analysis of a first order delay differential-delay

equation containing two delays, Phys. Rev. A 40, No. 6 (1989), 3420-3428.

R. NussBaum, Differential delay equations with two time lags, Mem. Amer. Math. Soc. 205,

Providence, 1978.

. C. G. Ragazzo aND C. P. MaLTA, “Mode Selection on a Differential Equation with Two
Delays Arising in Optics,” Preprint, 1990.

. J. Ruiz Cragyssen, Effect of delays on functional differential equations, J. Differential
Equations 20 (1976), 404-440.

. H. W. StecH, The Hopf bifurcation: Stability result and application, J. Math. Anal. Appl.
71 (1979), 525-546.



