491 research outputs found

    Munin: Distributed Shared Memory Based on Type-Specific Memory Coherence

    Get PDF
    We are developing Munin y , a system that allows pro­ grams written for shared memory multiprocessors to be executed efficiently on distributed memory ma­chines. Thus, Munin overcomes the architectural lim­itations of shared memory machines, while maintain­ing their advantages in terms of ease of programming. A unique characteristic of Munin is the mechanism by which the shared memory programming model is translated to the distributed memory hardware. This translation is performed by runtime software, with the aid of semantic hints provided by the user. Each shared data object is supported by a memory coher­ence mechanism appropriate to the manner in which the object is accessed. This paper focuses on Munin's memory coherence mechanisms, and compares our approach to previous work in this area. This research was supported in part by the National Science Foundationunder Grants CCR­8716914 and DCA­8619893 and by a National Science Foundation Fellowship. y In Norse mythology, the ravens Munin (Memory) and Hugin (Thought) perched on Odin's shoulder, and each evening they flew across the world to bring Odin knowledge of man's memories and thoughts. Thus, the raven Munin can be considered to have been the first distributed shared memory mechanism

    Implementation and Performance of Munin

    Get PDF
    Munin is a distributed shared memory (DSM) system that allows shared memory paral­lel programs to be executed efficiently on distributed memory multiprocessors. Munin is unique among existing DSM systems in its use of multiple consistency protocols and in its use of release consistency. In Munin, shared program variables are annotated with their expected access pattern, and these annotations are then used by the runtime system to choose a consistency protocol best suited to that access pattern. Release consistency allows Munin to mask network latency and reduce the number of messages required to keep memory consistent. Munin's multi­protocol release consistency is implemented in software using a delayed update queue that buffers and merges pending outgoing writes. A sixteen­processor prototype of Munin is currently operational. We evaluate its imple­ mentation and describe the execution of two Munin programs that achieve performance within ten percent of message passing implementations of the same programs. Munin achieves this level of performance with only minor annotations to the shared memory programs

    Techniques for Reducing Consistency-Related Communication in Distributed Shared Memory System

    Get PDF
    Distributed shared memory 8DSM) is an abstraction of shared memory on a distributed memory machine. Hardware DSM systems support this abstraction at the architecture level; software DSM systems support the abstraction within the runtime system. One of the key problems in building an efficient software DSM system is to reduce the amount of communication needed to keep the distributed memories consistent. In this paper we present four techniques for doing so: 1) software release consistency; 2) multiple consistency protocols; (3) write-shared protocols; and (4) an update-with-timeout mechanism. These techniques have been implemented in the Munin DSM system. We compare the performance of seven Munin application programs, first to their performance when implemented using message passing, and then to their performance when running on a conventional software DSM system that does not embody the above techniques. On a 16-processor cluster of workstations, Munin’s performance is within 5% of message passing for four out of the seven applications. For the other three, performance is within 29% to 33%. Detailed analysis of two of these three applications indicates that the addition of a function shipping capability would bring their performance to within 7% of the message passing performance. Compared to a conventional DSM system, Munin achieves performance improvements ranging from a few to several hundred percent, depending on the application

    Auxin influx importers modulate serration along the leaf margin

    Get PDF
    Leaf shape in Arabidopsis is modulated by patterning events in the margin that utilize a PIN-based auxin exporter/CUC2 transcription factor system to define regions of promotion and retardation of growth, leading to morphogenesis. In addition to auxin exporters, leaves also express auxin importers, notably members of the AUX1/LAX family. In contrast to their established roles in embryogenesis, lateral root and leaf initiation, the function of these transporters in leaf development is poorly understood. We report that three of these genes (AUX1, LAX1 and LAX2) show specific and dynamic patterns of expression during early leaf development in Arabidopsis, and that loss of expression of all three genes is required for observation of a phenotype in which morphogenesis (serration) is decreased. We used these expression patterns and mutant phenotypes to develop a margin-patterning model that incorporates an AUX1/LAX1/LAX2 auxin import module that influences the extent of leaf serration. Testing of this model by margin-localized expression of axr3–1 (AXR17) provides further insight into the role of auxin in leaf morphogenesis

    Time varying α\alpha in N=8 extended Supergravity

    Full text link
    There has been some evidence that the fine structure "constant" α\alpha may vary with time. We point out that this variation can be described by a scalar field in some supergravity theory in our toy model, for instance, the N=8 extended supergravity in four dimensions which can be accommodated in M-theory.Comment: 5 pages,1 figures. Accepted for publication in JHE

    Chaotic scalar fields as models for dark energy

    Full text link
    We consider stochastically quantized self-interacting scalar fields as suitable models to generate dark energy in the universe. Second quantization effects lead to new and unexpected phenomena is the self interaction strength is strong. The stochastically quantized dynamics can degenerate to a chaotic dynamics conjugated to a Bernoulli shift in fictitious time, and the right amount of vacuum energy density can be generated without fine tuning. It is numerically observed that the scalar field dynamics distinguishes fundamental parameters such as the electroweak and strong coupling constants as corresponding to local minima in the dark energy landscape. Chaotic fields can offer possible solutions to the cosmological coincidence problem, as well as to the problem of uniqueness of vacua.Comment: 30 pages, 3 figures. Replaced by final version accepted by Phys. Rev.

    Microfluidic and Nanofluidic Cavities for Quantum Fluids Experiments

    Full text link
    The union of quantum fluids research with nanoscience is rich with opportunities for new physics. The relevant length scales in quantum fluids, 3He in particular, are comparable to those possible using microfluidic and nanofluidic devices. In this article, we will briefly review how the physics of quantum fluids depends strongly on confinement on the microscale and nanoscale. Then we present devices fabricated specifically for quantum fluids research, with cavity sizes ranging from 30 nm to 11 microns deep, and the characterization of these devices for low temperature quantum fluids experiments.Comment: 12 pages, 3 figures, Accepted to Journal of Low Temperature Physic

    Interacting Kasner-type cosmologies

    Full text link
    It is well known that Kasner-type cosmologies provide a useful framework for analyzing the three-dimensional anisotropic expansion because of the simplification of the anisotropic dynamics. In this paper relativistic multi-fluid Kasner-type scenarios are studied. We first consider the general case of a superposition of two ideal cosmic fluids, as well as the particular cases of non-interacting and interacting ones, by introducing a phenomenological coupling function q(t)q(t). For two-fluid cosmological scenarios there exist only cosmological scaling solutions, while for three-fluid configurations there exist not only cosmological scaling ones, but also more general solutions. In the case of triply interacting cosmic fluids we can have energy transfer from two fluids to a third one, or energy transfer from one cosmic fluid to the other two. It is shown that by requiring the positivity of energy densities there always is a matter component which violates the dominant energy condition in this kind of anisotropic cosmological scenarios.Comment: Accepted for publication in Astrophysics &Space Science, 8 page

    Block Spin Density Matrix of the Inhomogeneous AKLT Model

    Full text link
    We study the inhomogeneous generalization of a 1-dimensional AKLT spin chain model. Spins at each lattice site could be different. Under certain conditions, the ground state of this AKLT model is unique and is described by the Valence-Bond-Solid (VBS) state. We calculate the density matrix of a contiguous block of bulk spins in this ground state. The density matrix is independent of spins outside the block. It is diagonalized and shown to be a projector onto a subspace. We prove that for large block the density matrix behaves as the identity in the subspace. The von Neumann entropy coincides with Renyi entropy and is equal to the saturated value.Comment: 20 page

    Star Models with Dark Energy

    Full text link
    We have constructed star models consisting of four parts: (i) a homogeneous inner core with anisotropic pressure (ii) an infinitesimal thin shell separating the core and the envelope; (iii) an envelope of inhomogeneous density and isotropic pressure; (iv) an infinitesimal thin shell matching the envelope boundary and the exterior Schwarzschild spacetime. We have analyzed all the energy conditions for the core, envelope and the two thin shells. We have found that, in order to have static solutions, at least one of the regions must be constituted by dark energy. The results show that there is no physical reason to have a superior limit for the mass of these objects but for the ratio of mass and radius.Comment: 20 pages, 1 figure, references and some comments added, typos corrected, in press GR
    • …
    corecore