
Implementation and Performance of Munin

John B� Carter

Dept� of Comp� Sci�
Rice University

Houston� Texas ����������

John K� Bennett

Dept� of Elec�	Comp� Eng�
Rice University

Houston� Texas ����������

Willy Zwaenepoel

Dept� of Comp� Sci�
Rice University

Houston� Texas ����������

Appeared in Proceedings of the Thirteenth Symposium on Operating System Principles�
pp� ���
���� October �����

Abstract

Munin is a distributed shared memory �DSM� system that allows shared memory paral�
lel programs to be executed e�ciently on distributed memory multiprocessors� Munin is
unique among existing DSM systems in its use ofmultiple consistency protocols and in its
use of release consistency� In Munin� shared program variables are annotated with their
expected access pattern� and these annotations are then used by the runtime system to
choose a consistency protocol best suited to that access pattern� Release consistency
allows Munin to mask network latency and reduce the number of messages required to
keep memory consistent� Munin�s multi�protocol release consistency is implemented in
software using a delayed update queue that bu�ers and merges pending outgoing writes�
A sixteen�processor prototype of Munin is currently operational� We evaluate its imple�
mentation and describe the execution of two Munin programs that achieve performance
within ten percent of message passing implementations of the same programs� Munin
achieves this level of performance with only minor annotations to the shared memory
programs�

This research was supported in part by the National Science Foundation under Grants CDA�������� and CCR�
�������� by the IBM Corporation under Research Agreement No	 
�������� and by a NASA Graduate Fellowship	
Willy Zwaenepoel was on sabbatical at UT�Sydney and INRIA�Rocquencourt while a portion of this research was
conducted	

�	

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


� Introduction

A distributed shared memory �DSM� system provides the abstraction of a shared address space
spanning the processors of a distributed memorymultiprocessor� This abstraction simpli
es the pro�
gramming of distributed memory multiprocessors and allows parallel programs written for shared
memory machines to be ported easily� The challenge in building a DSM system is to achieve
good performance without requiring the programmer to deviate signi
cantly from the conventional
shared memory programming model� High memory latency and the high cost of sending messages
make this di�cult�

To meet this challenge� Munin incorporates two novel features� First� Munin employs multiple
consistency protocols� Each shared variable declaration is annotated by its expected access pat�
tern� Munin then chooses a consistency protocol suited to that pattern� Second� Munin is the 
rst
software DSM system that provides a release�consistent memory interface �	�� Roughly speak�
ing� release consistency requires memory to be consistent only at speci
c synchronization points�
resulting in a reduction of overhead and number of messages�

The Munin programming interface is the same as that of conventional shared memory parallel
programming systems� except that it requires �i� all shared variable declarations to be annotated
with their expected access pattern� and �ii� all synchronization to be visible to the runtime system�
Other than that� Munin provides thread� synchronization� and data sharing facilities like those
found in shared memory parallel programming systems ���

We report on the performance of two Munin programs� Matrix Multiply and Successive Over�
Relaxation �SOR�� We have hand�coded the same programs on the same hardware using message
passing� taking special care to ensure that the two versions of each program perform identical
computations� Comparison between the Munin and the message passing versions has allowed us to
assess the overhead associated with our approach� This comparison is encouraging� the performance
of the Munin programs di�ers from that of the hand�coded message passing programs by at most
ten percent� for con
gurations from one to sixteen processors�

The Munin prototype implementation consists of four parts� a simple preprocessor that converts
the program annotations into a format suitable for use by the Munin runtime system� a modi
ed
linker that creates the shared memory segment� a collection of library routines that are linked
into each Munin program� and operating system support for page fault handling and page table
manipulation� This separation of functionality has resulted in a system that is largely machine� and
language�independent� and we plan to port it to various other platforms and languages� The current
prototype is implemented on a workstation�based distributed memory multiprocessor consisting of
	� SUN�����s connected by a dedicated 	� Mbps Ethernet� It makes use of a version of the V
kernel �		 that allows user threads to handle page faults and to modify page tables�

A preliminary Munin design paper has been published previously ��� as well as some measure�
ments on shared memory programs that corroborate the basic design ��� This paper presents a
re
nement of the design� and then concentrates on the implementation of Munin and its perfor�
mance�

� Munin Overview

��� Munin Programming

Munin programmers write parallel programs using threads� as they would on a shared memory
multiprocessor ��� Munin provides library routines� CreateThread�� and DestroyThread��� for
this purpose� Any required user initialization is performed by a sequential user init�� routine� in

��



which the programmer may also specify the number of threads and processors to be used� Similarly�
there is an optional sequential user done�� routine that is run when the computation has 
nished�
Munin currently does not perform any thread migration or global scheduling� User threads are run
in a round robin fashion on the node on which they were created�

A Munin shared object corresponds to a single shared variable� although like Emerald ��� the
programmer can specify that a collection of variables be treated as a single object or that a large
variable be treated as a number of independent objects by the runtime system� By default� variables
larger than a virtual memory page are broken into multiple page�sized objects� We use the term
�object� to refer to an object as seen by the runtime system� i�e�� a program variable� an ��kilobyte
�page�sized� region of a variable� or a collection of variables that share an ��kilobyte page� Currently�
Munin only supports statically allocated shared variables� although this limitation can be removed
by a minor modi
cation to the memory allocator� The programmer annotates the declaration of
shared variables with a sharing pattern to specify the way in which the variable is expected to be
accessed� These annotations indicate to the Munin runtime system what combination of protocols
to use to keep shared objects consistent �see Section �����

Synchronization is supported by library routines for the manipulation of locks and barriers�
These library routines include CreateLock��� AcquireLock��� ReleaseLock��� CreateBarrier���
and WaitAtBarrier��� All synchronization operations must be explicitly visible to the runtime
system �i�e�� must use the Munin synchronization facilities�� This restriction is necessary for release
consistency to operate correctly �see Section �����

��� Software Release Consistency

Release consistency was introduced by the DASH system� A detailed discussion and a formal
de
nition can be found in the papers describing DASH �	�� ��� We summarize the essential aspects
of that discussion�

Release consistency requires that each shared memory access be classi
ed either as a syn�

chronization access or an ordinary access�� Furthermore� each synchronization accesses must be
classi
ed as either a release or an acquire� Intuitively� release consistency requires the system
to recognize synchronization accesses as special events� enforce normal synchronization ordering
requirements�� and guarantee that the results of all writes performed by a processor prior to a
release be propagated before a remote processor acquires the lock that was released�

More formally� the following conditions are required for ensuring release consistency�

	� Before an ordinary load or store is allowed to perform with respect to any other processor�
all previous acquires must be performed�

�� Before a release is allowed to perform with respect to any other processor� all previous ordinary
loads and stores must be performed�

�� Before an acquire is allowed to perform with respect to any other processor� all previous
releases must be performed� Before a release is allowed to perform with respect to any other
processor� all previous acquires and releases must be performed�

The term �all previous accesses� refers to all accesses by the same thread that precede the current
access in program order� A load is said to have �performed with respect to another processor� when

�We ignore chaotic data ��� in this presentation	
�For example� only one thread can acquire a lock at a time� and a thread attempting to acquire a lock must block
until the acquire is successful	

��



a subsequent store on that processor cannot a�ect the value returned by the load� A store is said
to have �performed with respect to another processor� when a subsequent load by that processor
will return the value stored �or the value stored in a later store�� A load or a store is said to have
�performed� when it has performed with respect to all other processors�

Previous DSM systems ��� 	�� 	�� ��� �� are based on sequential consistency ���� Sequential
consistency requires� roughly speaking� that each modi
cation to a shared object become visible
immediately to the other processors in the system� Release consistency postpones until the next
release the time at which updates must become visible� This allows updates to be bu�ered until
that time� and avoids having to block a thread until it is guaranteed that its current update has
become visible everywhere� Furthermore� if multiple updates need to go to the same destination�
they can be coalesced into a single message� The use of release consistency thus allows Munin
to mask memory access latency and to reduce the number of messages required to keep memory
consistent� This is important on a distributed memory multiprocessor where remote memory access
latency is signi
cant� and the cost of sending a message is high�

To implement release consistency� Munin requires that all synchronization be done through
system�supplied synchronization routines� We believe this is not a major constraint� as many shared
memory parallel programming environments already provide e�cient synchronization packages�
There is therefore little incentive for programmers to implement separate mechanisms� Unlike
DASH� Munin does not require that each individual shared memory access be marked�

Gharachorloo et al� �	�� 	� have shown that a large class of programs� essentially programs
with �enough� synchronization� produce the same results on a release�consistent memory as on a
sequentially�consistent memory� Munin�s multiple consistency protocols obey the ordering require�
ments imposed by release consistency� so� like DASH programs� Munin programs with �enough�
synchronization produce the same results under Munin as under a sequentially�consistent memory�
The experience with DASH and Munin indicates that almost all shared memory parallel programs
satisfy this criterion� No modi
cations are necessary to these programs� other than making all
synchronization operations utilize the Munin synchronization facilities�

��� Multiple Consistency Protocols

Several studies of shared memory parallel programs have indicated that no single consistency pro�
tocol is best suited for all parallel programs ��� 	�� 	�� Furthermore� within a single program�
di�erent shared variables are accessed in di�erent ways and a particular variable�s access pattern
can change during execution ���

Munin allows a separate consistency protocol for each shared variable� tuned to the access
pattern of that particular variable� Moreover� the protocol for a variable can be changed over the
course of the execution of the program� Munin uses program annotations� currently provided by
the programmer� to choose a consistency protocol suited to the expected access pattern of each
shared variable�

The implementation of multiple protocols is divided into two parts� high�level sharing pattern
annotations and low�level protocol parameters� The high�level annotations are speci
ed as part
of a shared variable declaration� These annotations correspond to the expected sharing pattern
for the variable� The current prototype supports a small collection of these annotations that
closely correspond to the sharing patterns observed in our earlier study of shared memory access
patterns ��� The low�level protocol parameters control speci
c aspects of the individual protocols�
such as whether an object may be replicated or whether to use invalidation or update to maintain
consistency� In Section ����	� we discuss the low�level protocol parameters that can be varied under
Munin� and in Section ����� we discuss the high�level sharing patterns supported in the current

��



Munin prototype�

����� Protocol Parameters

Munin�s consistency protocols are derived by varying eight basic protocol parameters�

� Invalidate or Update� �I� This parameter speci
es whether changes to an object should
be propagated by invalidating or by updating remote copies�

� Replicas allowed� �R� This parameter speci
es whether more than one copy of an object
can exist in the system�

� Delayed operations allowed� �D� This parameter speci
es whether or not the system
may delay updates or invalidations when the object is modi
ed�

� Fixed owner� �FO� This parameter directs Munin not to propagate ownership of the object�
The object may be replicated on reads� but all writes must be sent to the owner� from where
they may be propagated to other nodes�

� Multiple writers allowed� �M� This parameter speci
es that multiple threads may con�
currently modify the object with or without intervening synchronization�

� Stable sharing pattern� �S� This parameter indicates that the object has a stable access
pattern� i�e�� the same threads access the object in the same way during the entire execution of
the program� If a di�erent thread attempts to access the object� Munin generates a runtime
error� For stable sharing patterns� Munin always sends updates to the same nodes� This
allows updates to be propagated to nodes prior to these nodes requesting the data�

� Flush changes to owner� �Fl� This parameter directs Munin to send changes only to the
object�s owner and to invalidate the local copy whenever the local thread propagates changes�

� Writable� �W� This parameter speci
es whether the shared object can be modi
ed� If a
write is attempted to a non�writable object� Munin generates a runtime error�

����� Sharing Annotations

Sharing annotations are added to each shared variable declaration� to guide Munin in its selection
of the parameters of the protocol used to keep each object consistent� While these annotations are
syntactically part of the variable�s declaration� they are not programming language types� and as
such they do not nest or cause compile�time errors if misused� Incorrect annotations may result in
ine�cient performance or in runtime errors that are detected by the Munin runtime system�

Read�only objects are the simplest form of shared data� Once they have been initialized� no
further updates occur� Thus� the consistency protocol simply consists of replication on demand� A
runtime error is generated if a thread attempts to write to a read�only object�

Formigratory objects� a single thread performs multiple accesses to the object� including one
or more writes� before another thread accesses the object ���� Such an access pattern is typical
of shared objects that are accessed only inside a critical section� The consistency protocol for
migratory objects is to migrate the object to the new thread� provide it with read and write access
�even if the 
rst access is a read�� and invalidate the original copy� This protocol avoids a write
miss and a message to invalidate the old copy when the new thread 
rst modi
es the object�

Write�shared objects are concurrently written by multiple threads� without the writes being
synchronized� because the programmer knows that the updates modify separate words of the object�

��



However� because of the way that objects are laid out in memory� there may be false sharing� False
sharing occurs when two shared variables reside in the same consistency unit� such as a cache
block or a virtual memory page� In systems that do not support multiple writers to an object� the
consistency unit may be exchanged between processors even though the processors are accessing
di�erent objects�

Producer�consumer objects are written �produced� by one thread and read �consumed� by
one or more other threads� The producer�consumer consistency protocol is to replicate the object�
and to update� rather than invalidate� the consumer�s copies of the object when the object is
modi
ed by the producer� This eliminates read misses by the consumer threads� Release consistency
allows the producer�s updates to be bu�ered until the producer releases the lock that protects the
objects� At that point� all of the changes can be passed to the consumer threads in a single
message� Furthermore� producer�consumer objects have stable sharing relationships� so the system
can determine once which nodes need to receive updates of an object� and use that information
thereafter� If the sharing pattern changes unexpectedly� a runtime error is generated�

Reduction objects are accessed via Fetch and � operations� Such operations are equivalent
to a lock acquisition� a read followed by a write of the object� and a lock release� An example of
a reduction object is the global minimum in a parallel minimum path algorithm� which would be
maintained via a Fetch and min� Reduction objects are implemented using a 
xed�owner protocol�

Result objects are accessed in phases� They are alternately modi
ed in parallel by multiple
threads� followed by a phase in which a single thread accesses them exclusively� The problem with
treating these objects as standard write�shared objects is that when the multiple threads complete
execution� they unnecessarily update the other copies� Instead� updates to result objects are sent
back only to the single thread that requires exclusive access�

Conventional objects are replicated on demand and are kept consistent by requiring a writer
to be the sole owner before it can modify the object� Upon a write miss� an invalidation message
is transmitted to all other replicas� The thread that generated the miss blocks until it has the only
copy in the system ���� A shared object is considered conventional if no annotation is provided by
the programmer�

The combination of protocol parameter settings for each annotation is summarized in Table 	�

New sharing annotations can be added easily by modifying the preprocessor that parses the
Munin program annotations� For instance� we have considered supporting an invalidation�based
protocol with delayed invalidations and multiple writers� essentially invalidation�based write�shared

Sharing Parameter Settings

Annotation I R D FO M S Fl W

Read�only N Y � � � � � N
Migratory Y N � N N � N Y
Write�shared N Y Y N Y N N Y
Producer�Consumer N Y Y N Y Y N Y
Reduction N Y N Y N � N Y
Result N Y Y Y Y � Y Y
Conventional Y Y N N N � N Y

Table � Munin Annotations and Corresponding Protocol Parameters

��



objects� but we have chosen not to implement such a protocol until we encounter a need for it�

��� Advanced Programming

For Matrix Multiply and Successive Over�Relaxation� the two Munin programs discussed in this
paper� simply annotating each shared variable�s declaration with a sharing pattern is su�cient to
achieve performance comparable to a hand�coded message passing version� Munin also provides
a small collection of library routines that allow the programmer to 
ne�tune various aspects of
Munin�s operation� These �hints� are optional performance optimizations�

In Munin� the programmer can specify the logical connections between shared variables and
the synchronization objects that protect them ���� Currently� this information is provided by the
user using an AssociateDataAndSynch�� call� If Munin knows which objects are protected by a
particular lock� the required consistency information is included in the message that passes lock
ownership� For example� if access to a particular object is protected by a particular lock� such as
an object accessed only inside a critical section� Munin sends the new value of the object in the
message that is used to pass lock ownership� This avoids one or more access misses when the new
lock owner 
rst accesses the protected data�

The PhaseChange�� library routine purges the accumulated sharing relationship information
�i�e�� what threads are accessing what objects in a producer�consumer situation�� This call is meant
to support adaptive grid or sparse matrix programs in which the sharing relationships are stable for
long periods of time between problem re�distribution phases� The shared matrices can be declared
producer�consumer� which requires that the sharing behavior be stable� and PhaseChange�� can
then be invoked whenever the sharing relationships change�

ChangeAnnotation��modi
es the expected sharing pattern of a variable and hence the protocol
used to keep it consistent� This lets the system adapt to dynamic changes in the way a particular
object is accessed� Since the sharing pattern of an object is an indication to the system of the consis�
tency protocol that should be used to maintain consistency� the invocation of ChangeAnnotation��
may require the system to perform some immediate work to bring the current state of the object
up�to�date with its new sharing pattern�

Invalidate�� deletes the local copy of an object� and migrates it elsewhere if it is the sole copy
or updates remote copies with any changes that may have occurred�

Flush�� advises Munin to �ush any bu�ered writes immediately rather than waiting for a
release�

SingleObject�� advises Munin to treat a large �multi�page� variable as a single object rather
than breaking it into smaller page�sized objects�

Finally� PreAcquire�� advises Munin to acquire a local copy of a particular object in anticipa�
tion of future use� thus avoiding the latency caused by subsequent read misses�

� Implementation

��� Overview

Munin executes a distributed directory�based cache consistency protocol �	 in software� in which
each directory entry corresponds to a single object� Munin also implements locks and barriers�
using a distributed queue�based synchronization protocol ���� ���

During compilation� the sharing annotations are read by the Munin preprocessor� and an auxil�
iary 
le is created for each input 
le� These auxiliary 
les are used by the linker to create a shared

��



data segment and a shared data description table� which are appended to the Munin executable

le� The program is then linked with the Munin runtime library�

When the application program is invoked� the Munin root thread starts running� It initializes
the shared data segment� creates Munin worker threads to handle consistency and synchronization
functions� and registers itself with the kernel as the address space�s page fault handler �as is done by
Mach�s external pagers ����� It then executes the user initialization routine user init��� spawns
the number of remote copies of the program speci
ed by user init��� and initializes the remote
shared data segments� Finally� the Munin root thread creates and runs the user root thread� The
user root thread in turn creates user threads on the remote nodes�

Whenever a user thread has an access miss or executes a synchronization operation� the Munin
root thread is invoked� The Munin root thread may call on one of the local Munin worker threads
or a remote Munin root thread to perform the necessary operations� Afterwards� it resumes the
user thread�

��� Data Object Directory

The data object directory within each Munin node maintains information about the state of the
global shared memory� This directory is a hash table that maps an address in the shared address
space to the entry that describes the object located at that address� The data object directory on
the Munin root node is initialized from the shared data description table found in the executable

le� whereas the data object directory on the other nodes is initially empty� When Munin cannot

nd an object directory entry in the local hash table� it requests a copy from the object�s home
node� which for statically de
ned objects is the root node� Object directory entries contain the
following 
elds�

� Start address and Size� used as the key for looking up the object�s directory entry in a
hash table� given an address within the object�

� Protocol parameter bits� represent the protocol parameters described in Section ����	�

� Object state bits� characterize the dynamic state of the object� e�g�� whether the local copy
is valid� writable� or modi�ed since the last �ush� and whether a remote copy of the object
exists�

� Copyset� used to specify which remote processors have copies of the object that must be
updated or invalidated� For a small system� such as our prototype� a bitmap of the remote
processors is su�cient��

� Synchq �optional�� a pointer to the synchronization object that controls access to the object
�see Section �����

� Probable owner �optional�� used as a �best guess� to reduce the overhead of determining
the identity of the Munin node that currently owns the object ���� The identity of the owner
node is used by the ownership�based protocols �migratory� conventional� and reduction��
and is also used when an object is locked in place �reduction� or when the changes to the
object should be �ushed only to its owner �result��

�This approach does not scale well to larger systems� but an earlier study of parallel programs suggests that a
processor list is often quite short 
��	 The common exception to this rule occurs when an object is shared by every
processor� and a special All Nodes value can be used to indicate this case	

��



� Home node �optional�� the node at which the object was created� It is used for a few record
keeping functions and as the node of last resort if the system ever attempts to invalidate all
remote copies of an object�

� Access control semaphore� provides mutually exclusive access to the object�s directory
entry�

� Links� used for hashing and enqueueing the object�s directory entry�

��� Delayed Update Queue

The delayed update queue �DUQ� is used to bu�er pending outgoing write operations as part of
Munin�s software implementation of release consistency� A write to an object that allows delayed
updates� as speci
ed by the protocol parameter bits� is stored in the DUQ� The DUQ is �ushed
whenever a local thread releases a lock or arrives at a barrier�

Munin uses the virtual memory hardware to detect and enqueue changes to objects� Initially�
and after each time that the DUQ is �ushed� the shared objects handled by the DUQ are write�
protected using the virtual memory hardware� When a thread 
rst attempts to write to such
an object� the resulting protection fault invokes Munin� The object�s directory entry is put on
the DUQ� write�protection is removed so that subsequent writes do not experience consistency
overhead� and the faulting thread is resumed� If multiple writers are allowed on the object� a copy
�twin� of the object is also made� This twin is used to determine which words within the object
have been modi
ed since the last update�

When a thread releases a lock or reaches a barrier� the modi
cations to the objects enqueued
on the DUQ are propagated to their remote copies�� The set of remote copies is either immediately
available in the Copyset in the data object directory� or it must be dynamically determined� The
algorithm that we currently use to dynamically determine the Copyset is somewhat ine�cient� We
have devised� but not yet implemented� an improved algorithm that uses the owner node to collect
Copyset information� Currently� a message indicating which objects have been modi
ed locally is
sent to all other nodes� Each node replies with a message indicating the subset of these objects for
which it has a copy� If the protocol parameters indicate that the sharing relationship is stable� this
determination is performed only once�

If an enqueued object does not have a twin �i�e�� multiple writers are not allowed�� Munin
transmits updates or invalidations to nodes with remote copies� as indicated by the invalidate
protocol parameter bit in the object�s directory entry� If the object does have a twin� Munin
performs a word�by�word comparison of the object and its twin� and run�length encodes the results
of this �di�� into the space allocated for the twin� Each run consists of a count of identical words�
the number of di�ering words that follow� and the data associated with those di�ering words� The
encoded object is sent to the nodes that require updates� where the object is decoded and the
changes merged into the original object� If a Munin node with a dirty copy of an object receives
an update for that object� it incorporates the changes immediately� If a Munin node with a dirty
copy of an object receives an invalidation request for that object and multiple writers are allowed�
any pending local updates are propagated� Otherwise� a runtime error is generated�

This approach works well when there are multiple writes to an object between DUQ �ushes�
which allows the expense of the copy and subsequent comparison to be amortized over a large
number of write accesses� Table � breaks down the time to handle updates to an ��kilobyte object
through the DUQ� This includes the time to handle a fault �including resuming the thread��

�This is a conservative implementation of release consistency� because the updates are propagated at the time of the

��



One All Alternate
Component Word Words Words

Handle Fault ���	 ���	 ���	
Copy object 	�	� 	�	� 	�	�
Encode object ���� ���� ����
Transmit object 	��� 	���� 	����
Decode object ��	� ���� ����
Reply ���� ���� ����

Total 	���� ����� �	�	�

Table � Time to Handle an ��kilobyte Object through DUQ �msec��

make a copy of the object� encode changes to the object� transmit them to a single remote node�
decode them remotely� and reply to the original sender� We present the results for three di�erent
modi
cation patterns� In the 
rst pattern� a single word within the object has changed� In the
second� every word in the object has changed� In the third� every other word has changed� which
is the worst case for our run�length encoding scheme because there are a maximum number of
minimum�length runs�

We considered and rejected two other approaches for implementing release consistency in soft�
ware�

	� Force the thread to page fault on every write to a replicated object so that the modi
ed words
can be queued as they are accessed�

�� Have the compiler add code to log writes to replicated objects as part of the write�

The 
rst approach works well if an object is only modi
ed a small number of times between DUQ
�ushes� or if the page fault handling code can be made extremely fast� Since it is quite common for
an object to be updated multiple times between DUQ �ushes ��� the added overhead of handling
multiple page faults makes this approach generally unacceptable� The second approach was used
successfully by the Emerald system ��� We chose not to explore this approach in the prototype
because we have a relatively fast page fault handler� and we did not want to modify the compiler�
This approach is an attractive alternative for systems that do not support fast page fault handling
or modi
cation of virtual memory mappings� such as the iPSC�i��� hypercube �	�� However� if
the number of writes to a particular object between DUQ �ushes is high� as is often the case ���
this approach will perform relatively poorly because each write to a shared object will be slowed�
We intend to study this approach more closely in future system implementations�

��� Synchronization Support

Synchronization objects are accessed in a fundamentally di�erent way than data objects ��� so
Munin does not provide synchronization through shared memory� Rather� each Munin node inter�
acts with the other nodes to provide a high�level synchronization service� Munin provides support

release� rather than being delayed until the release is performed �see Section 
	
�	

��



for distributed locks and barriers� More elaborate synchronization objects� such as monitors and
atomic integers� can be built using these basic mechanisms�

Munin employs a queue�based implementation of locks� which allows a thread to request owner�
ship of a lock and then to block awaiting a reply without repeated queries� Munin uses a synchro�
nization object directory� analogous to the data object directory� to maintain information about the
state of the synchronization objects� For each lock� a queue identi
es the user threads waiting for
the lock� so a release�acquire pair can be performed with a single message exchange if the acquire
is pending when the release occurs� The queue itself is distributed to improve scalability�

When a thread wants to acquire a lock� it calls AcquireLock��� which invokes Munin to 
nd the
lock in the synchronization object directory� If the lock is local and free� the thread immediately
acquires the lock and continues executing� If the lock is not free� Munin sends a request to the
probable lock owner to 
nd the actual owner� possibly requiring the request to be forwarded multiple
times� When the request arrives at the owner node� ownership is forwarded directly to the requester
if the lock is free� Otherwise� the owner forwards the request to the thread at the end of the queue�
which puts the requesting thread on the lock�s queue� Each enqueued thread knows only the
identity of the thread that follows it on the queue� When a thread performs an Unlock�� and the
associated queue is non�empty� lock ownership is forwarded directly to the thread at the head of
the queue�

To wait at a barrier� a thread calls WaitAtBarrier��� which causes a message to be sent to the
owner node� and the thread to be blocked awaiting a reply� When the Munin root thread on the
owner node has received messages from the speci
ed number of threads� it replies to the blocked
threads� causing them to be resumed� For future implementations on larger systems� we envision
the use of barrier trees and other more scalable schemes ��	�

� Performance

We have measured the performance of two Munin programs� Matrix Multiply and Successive Over�
Relaxation �SOR�� We have also hand�coded the same programs on the same hardware using
the underlying message passing primitives� We have taken special care to ensure that the actual
computational components of both versions of each program are identical� This section describes
in detail the actions of the Munin runtime system during the execution of these two programs� and
reports the performance of both versions of these programs� Both programs make use of the DUQ
to mitigate the e�ects of false sharing and thus improve performance� They also exploit Munin�s
multiple consistency protocols to reduce the consistency maintenance overhead�

��� Matrix Multiply

The shared variables in Matrix Multiply are declared as follows�

shared read only int input��N��N��

shared read only int input��N��N��

shared result int output�N��N��

The user init�� routine initializes the input matrices and creates a barrier via a call to CreateBarrier���
After creating worker threads� the user root thread waits on the barrier by calling WaitAtBarrier���
Each worker thread computes a portion of the output matrix using a standard �sub�matrix multiply
routine� When a worker thread completes its computation� it performs a WaitAtBarrier�� call�
After all workers reach the barrier� the program terminates� The program does not utilize any of
the optimizations described in Section ����

�	



On the root node� the input matrices are mapped as read�only� based on the read�only anno�
tation� and the output matrix is mapped as read�write� based on the result annotation� When
a worker thread 
rst accesses an input matrix� the resulting page fault is handled by the Munin
root thread on that node� It acquires a copy of the object from the root node� maps it as read�
only� and resumes the faulted thread� Similarly� when a remote worker thread 
rst writes to the
output matrix� a page fault occurs� A copy of that page of the output matrix is then obtained
from the root node� and the copy is mapped as read�write� Since the output matrix is a result

object� there may be multiple writers� and updates may be delayed� Thus� Munin makes a twin�
and inserts the output matrix�s object descriptor in the DUQ� When a worker thread completes
its computation and performs a WaitAtBarrier�� call� Munin �ushes the DUQ� Since the output
matrix is a result object� Munin sends the modi
cations only to the owner �the node where the
root thread is executing�� and invalidates the local copy�

Table � gives the execution times of both the Munin and the message passing implementations
for multiplying two ��� � ��� matrices� The System time represents the time spent executing
Munin code on the root node� while the User time is that spent executing user code� In all cases�
the performance of the Munin version was within 	�� of that of the hand�coded message passing
version� Program execution times for representative numbers of processors are shown� The program
behaved similarly for all numbers of processors from one to sixteen�

Since di�erent portions of the output matrix are modi
ed concurrently by di�erent worker
threads� there is false sharing of the output matrix� Munin�s provision for multiple writers reduces
the adverse e�ects of this false sharing� As a result� the data motion exhibited by the Munin
version of Matrix Multiply is nearly identical to that exhibited by the message passing version� In
the Munin version� after the workers have acquired their input data� they execute independently�
without communication� as in the message passing version� Furthermore� the various parts of the
output matrix are sent from the node where they are computed to the root node� again as in
the message passing version� The only di�erence between the two versions is that in Munin the
appropriate parts of the input matrices are paged in� while in the message passing version they
are sent during initialization� The additional overhead present in the Munin version comes from
the page fault handling and the copying� encoding� and decoding of the output matrix� In a DSM
system that does not support multiple writers to an object� portions of the output matrix could
�ping�pong� between worker threads�

The performance of Matrix Multiply can be optimized by utilizing one of the performance
optimizations discussed in Section ���� If Munin is told to treat the 
rst input array as a single
object rather than breaking it into smaller page�sized objects� via a call to SingleObject��� the

� of DM Munin �

Procs Total Total System User Di�

	 ����	� � � � �
� ������ ����	� 	��	 ������ ���
� 	����	 	����� ���� 	�	��� ���
� 	�	��� 	����� ���� ����	 ��	
	� ����	 ����	 ���	 ���	� ���

Table � Performance of Matrix Multiply�sec��

��



entire input array is transmitted to each worker thread when the array is 
rst accessed� Overhead
is lowered by reducing the number of access misses� This improves the performance of the Munin
version to within �� of of the hand�coded message passing version� Execution times re�ecting this
optimization are shown in Table ��

��� Successive Over�Relaxation

SOR is used to model natural phenomena� An example of an SOR application is determining the
temperature gradients over a square area� given the temperature values at the area boundaries�
The basic SOR algorithm is iterative� The area is divided into a grid of points� represented by a
matrix� at the desired level of granularity� Each matrix element corresponds to a grid point� During
each iteration� each matrix element is updated to be the average of its four nearest neighbors� To
avoid overwriting the old value of a matrix element before it is used� the program can either use a
scratch array or only compute every other element per iteration �so�called �red�black� SOR�� Both
techniques work equally well under Munin� Our example employs the scratch array approach�

SOR is parallelized by dividing the area into sections and having a worker thread compute
the values for each section� Newly computed values at the section boundaries must be exchanged
with adjacent sections at the end of each iteration� This exchange engenders a producer�consumer
relationship between grid points at the boundaries of adjacent sections�

In the Munin version of SOR� the user root thread creates a worker thread for each section�
The matrix representing the grid is annotated as

shared producer consumer int matrix �����

The programmer is not required to specify the data partitioning to the runtime system� After each
iteration� worker threads synchronize by waiting at a barrier� After all workers have completed
all iterations� the program terminates� The Munin version of SOR did not utilize any of the
optimizations described in Section ����

A detailed analysis of the execution� which exempli
es how producer�consumer sharing is cur�
rently handled by Munin� follows�

� During the 
rst compute phase� when the new average of the neighbors is computed in the
scratch array� the nodes read�fault in copies of the pages of the matrix as needed�

� During the 
rst copy phase� when the newly computed values are copied to the matrix� nodes
write�fault� enqueue the appropriate pages on the DUQ� create twins of these pages� make
the originals read�write� and resume�

� of DM Munin �

Procs Total Total System User Di�

	 ����	� � � � �
� ������ �����	 ���� ����	� ���
� 	����	 	����� ���� 	���	� 	�	
� 	�	��� 	����� ���� ����	 	��
	� ����	 ����	 	��� ���	� 	��

Table � Performance of Optimized Matrix Multiply �sec��

��



� When the 
rst copy phase ends and the worker thread waits at the barrier� the sharing
relationships between producer and consumer are determined as described in Section ����
Afterwards� any pages that have an empty Copyset� and are therefore private� are made
locally writable� their twins are deleted� and they do not generate further access faults� In
our SOR example� all non�edge elements of each section are handled in this manner�

� Since the sharing relationships of producer�consumer objects are stable� after all subsequent
copy phases� updates to shared portions of the matrix �the edge elements of each section� are
propagated only to those nodes that require the updated data �those nodes handling adjacent
sections�� At each subsequent synchronization point� the update mechanism automatically
combines the elements destined for the same node into a single message�

Table � gives the execution times of both the Munin and the message passing implementation
of 	�� iterations of SOR on a �	� � �	� matrix� for representative numbers of processors� In all
cases� the performance of the Munin version was within 	�� of that of the hand�coded message
passing version� Again� the program behaved similarly for all numbers of processors from one to
sixteen�

Since the matrix elements that each thread accesses overlap with the elements that its neigh�
boring threads access� the sharing is very 
ne�grained and there is considerable false sharing� After
the 
rst pass� which involves an extra phase to determine the sharing relationships� the data motion
in the Munin version of SOR is essentially identical to the message passing implementation� The
only extra overhead comes from the fault handling and from the copying� coding� and decoding of
the shared portions of the matrix�

��� E�ect of Multiple Protocols

We studied the importance of having multiple protocols by comparing the performance of the multi�
protocol implementation with the performance of an implementation using only conventional or
only write�shared objects� Conventional objects result in an ownership�based write�invalidate
protocol being used� similar to the one implemented in Ivy ���� We also chose write�shared

because it supports multiple writers and 
ne�grained sharing�

The execution times for the unoptimized version of Matrix Multiply �see Table �� and SOR� for
the previous problem sizes and for 	� processors� are presented in Table �� For Matrix Multiply�
the use of result and read only sped up the time required to load the input matrices and later
purge the output matrix back to the root node and resulted in a ���� performance improvement

� of DM Munin �

Procs Total Total System User Di�

	 	����� � � � �
� ����� ����� ���� �	��� ���
� ����� ����� ���� �	��� ���
� ����� ����� ��	� 	���� ���
	� ����� ����� ���� ���	 ���

Table 	 Performance of SOR �sec��

��



Protocol Matrix Multiply SOR

Multiple ����	 �����
Write�shared ����� �����
Conventional ����� �����

Table 
 E�ect of Multiple Protocols �sec��

over write�shared and a ���� performance improvement over conventional� For SOR� the use
of producer�consumer reduced the consistency overhead� by removing the phase in which sharing
relationships are determined for all but the 
rst iteration� The resulting execution time was less
than half that of the implementations using only conventional or write�shared� The execution
time for SOR using write�shared can be improved by using an better algorithm for determining
the Copyset �see Section �����

��� Summary

For Matrix Multiply� after initialization� each worker thread transmits only a single result message
back to the root node� which is the same communication pattern found in a hand�coded message
passing version of the program� For SOR� there is only one message exchange between adjacent
sections per iteration �after the 
rst iteration�� again� just as in the message passing version�

The common problem of false sharing of large objects �or pages�� which can hamper the perfor�
mance of DSM systems� is relatively benign under Munin because we do not enforce a single�writer
restriction on objects that do not require it� Thus� intertwined access regions and non�page�aligned
data are less of a problem in Munin than with other DSM systems� The overhead introduced by
Munin in both Matrix Multiply and SOR� other than the determination of the sharing relationships
after the 
rst iteration of SOR� comes from the expense of encoding and decoding modi
ed objects�

By adding only minor annotations to the shared memory programs� the resulting Munin pro�
grams executed almost as e�ciently as the corresponding message passing versions� In fact� during
our initial testing� the performance of the Munin programs was better than the performance of
the message passing versions� Only after careful tuning of the message passing versions were we
able to generate message passing programs that resulted in the performance data presented here�
This anecdote emphasizes the di�culty of writing e�cient message passing programs� and serves
to emphasize the value of a DSM system like Munin�

� Related Work

A number of software DSM systems have been developed ��� �� 	�� 	�� ��� ��� All� except Mid�
way ��� use sequential consistency ���� Munin�s use of release consistency only requires consistency
to be enforced at speci
c synchronization points� with the resulting reduction in latency and number
of messages exchanged�

Ivy uses a single�writer� write�invalidate protocol� with virtual memory pages as the units of
consistency ���� The large size of the consistency unit makes the system prone to false sharing�
In addition� the single�writer nature of the protocol can cause a �ping�pong� behavior between
multiple writers of a shared page� It is then up to the programmer or the compiler to lay out the
program data structures in the shared address space such that false sharing is reduced�

��



Clouds performs consistency management on a per�object basis� or in Clouds terminology� on
a per�segment basis ���� Clouds allows a segment to be locked by a processor� to avoid the �ping�
pong� e�ects that may result from false sharing� Mirage also attempts to avoid these e�ects by
locking a page with a certain processor for a certain � time window �	�� Munin�s use of multiple�
writer protocols avoids the adverse e�ects of false sharing� without introducing the delays caused
by locking a segment to a processor�

Orca is also an object�oriented DSM system� but its consistency management is based on an
e�cient reliable ordered broadcast protocol ��� For reasons of scalability� Munin does not rely on
broadcast� In Orca� both invalidate and update protocols can be used� Munin also supports a
wider variety of protocols�

Unlike the designs discussed above� in Amber the programmer is responsible for the distribution
of data among processors �	�� The system does not attempt to automatically move or replicate
data� Good speedups are reported for SOR running on Amber� Munin automates many aspects
of data distribution� and still remains e�cient by asking the programmer to specify the expected
access patterns for shared data variables�

Linda provides a di�erent abstraction for distributed memory programming� all shared variables
reside in a tuple space� and the only operations allowed are atomic insertion� removal� and reading
of objects from the tuple space �	�� Munin stays closer to the more familiar shared memory
programming model� hopefully improving its acceptance with parallel programmers�

Midway �� proposes a DSM system with entry consistency� a memory consistency model weaker
than release consistency� The goal of Midway is to minimize communications costs by aggressively
exploiting the relationship between shared variables and the synchronization objects that protect
them�

Recently� designs for hardware distributed shared memory machines have been published ��� ���
Our work is most related to the DASH project ���� from which we adapt the concept of release
consistency� Unlike Munin� though� DASH uses a write�invalidate protocol for all consistency
maintenance� Munin uses the �exibility of its software implementation to also attack the problem
of read misses by allowing multiple writers to a single shared object and by using update protocols
�producer�consumer� write�shared� result� and pre�invalidation �migratory� when appropriate�
The APRIL machine takes a di�erent approach in combatting the latency problem on distributed
shared memory machines ��� APRIL provides sequential consistency� but relies on extremely fast
processor switching to overlap memory latency with computation�

A technique similar to the delayed update queue was used by the Myrias SPS multiprocessor �	��
It performed the copy�on�write and di� in hardware� but required a restricted form of parallelism
to ensure correctness�

Munin�s implementation of locks is similar to existing implementations on shared memory mul�
tiprocessors ���� ���

An alternative approach for parallel processing on distributed memory machines is to have the
compiler produce a message passing program starting from a sequential program� annotated by
the programmer with data partitions ��� ��� Given the static nature of compile�time analysis�
these techniques appear to be restricted to numerical computations with statically de
ned shared
memory access patterns�

� Conclusions and Future Work

The objective of the Munin project is to build a DSM system in which shared memory parallel
programs execute on a distributed memory machine and achieve good performance without the pro�

��



grammer having to make extensive modi
cations to the shared memory program� Munin�s shared
memory is di�erent from �real� shared memory only in that it provides a release�consistent memory
interface� and in that the shared variables are annotated with their expected access patterns� In
the applications that we have programmed in Munin so far� the release�consistent memory inter�
face has required no changes� while the annotations have proved to be only a minor chore� Munin
programming has been easier than message passing programming� Nevertheless� we have achieved
performance within ��	� percent of message passing implementations of the same applications� We
argue that this cost in performance is a small price to pay for the resulting reduction in program
complexity�

Further work on Munin will continue to examine the tradeo� between performance and pro�
gramming complexity� We are interested in examining whether memory consistency can be relaxed
further� without necessitating more program modi
cations than release consistency� We are also
considering more aggressive implementation techniques� such as the use of a pending updates queue
to hold incoming updates� a dual to the delayed update queue already in use� We also wish to
design higher�level interfaces to distributed shared memory in which the access patterns will be
determined without user annotation� Another important issue is Munin�s scalability in terms of
processor speed� interconnect bandwidth� and number of processors� To explore this issue� we in�
tend to implement Munin on suitable hardware platforms such as a Touchstone�class machine or
a high�speed network of supercomputer workstations� In this vein� we are also studying hardware
support for selected features of Munin�

Acknowledgements

Dave Johnson provided important guidance during the prototype implementation and his feedback
throughout the project was very useful� Peter Ostrin developed and timed the distributed memory
programs reported in this paper�

The authors wish to thank the anonymous referees for their many helpful comments� Brian Ber�
shad� Elmootazbellah Elnozahy� and Matt Zekauskas also provided many suggestions for improving
the paper�

References

�	 A� Agarwal� R� Simoni� J� Hennessy� and M� Horowitz� An evaluation of directory schemes for
cache coherence� In Proceedings of the ��th Annual International Symposium on Computer

Architecture� pages �������� June 	����

�� A� Agarwal� B��H� Lim� D� Kranz� and J� Kubiatowicz� APRIL� A processor architecture for
multiprocessing� In Proceedings of the ��th Annual International Symposium on Computer

Architecture� pages 	���		�� May 	����

�� H�E� Bal and A�S� Tanenbaum� Distributed programming with shared data� In Proceedings of
the IEEE CS ���� International Conference on Computer Languages� pages ����	� October
	����

�� V� Balasundaram� G� Fox� K� Kennedy� and U� Kremer� An interactive environment for data
partitioning and distribution� In Proceedings of the Fifth Distributed Memory Computing

Conference� Charleston� South Carolina� April 	����

��



�� J�K� Bennett� J�B� Carter� and W� Zwaenepoel� Adaptive software cache management for
distributed shared memory architectures� In Proceedings of the ��th Annual International

Symposium on Computer Architecture� pages 	���	��� May 	����

�� J�K� Bennett� J�B� Carter� and W� Zwaenepoel� Munin� Distributed shared memory based
on type�speci
c memory coherence� In Proceedings of the ���� Conference on the Principles

and Practice of Parallel Programming� March 	����

�� B�N� Bershad� E�D� Lazowska� and H�M� Levy� PRESTO� A system for object�oriented
parallel programming� Software	Practice and Experience� 	������	������ August 	����

�� B�N� Bershad and M�J� Zekauskas� Shared memory parallel programming with entry consis�
tency for distributed memory multiprocessors� Technical Report CMU�CS��	�	��� Carnegie�
Mellon University� September 	��	�

�� A� Black� N� Hutchinson� E� Jul� and H� Levy� Object structure in the Emerald system� In
Proceedings of the ACM Conference on Object�Oriented Programming Systems
 Languages

and Applications� pages ������ October 	����

�	� J�S� Chase� F�G� Amador� E�D� Lazowska� H�M� Levy� and R�J� Little
eld� The Amber
system� Parallel programming on a network of multiprocessors� In Proceedings of the Twelfth

ACM Symposium on Operating Systems Principles� pages 	���	��� December 	����

�		 D�R� Cheriton and W� Zwaenepoel� The distributed V kernel and its performance for diskless
workstations� In Proceedings of the Ninth ACM Symposium on Operating Systems Principles�
pages 	���	��� October 	����

�	� Intel Corporation� i��� ���bit microprocessor programmer�s manual� Santa Clara� California�
	����

�	� Myrias Corporation� System overview� Edmonton� Alberta� 	����

�	� S�J� Eggers and R�H� Katz� A characterization of sharing in parallel programs and its ap�
plication to coherency protocol evaluation� In Proceedings of the ��th Annual International

Symposium on Computer Architecture� pages �������� May 	����

�	� S�J� Eggers and R�H� Katz� The e�ect of sharing on the cache and bus performance of parallel
programs� In Proceedings of the �rd International Conference on Architectural Support for

Programming Languages and Systems� pages �������� April 	����

�	� K� Gharachorloo et al� Performance evaluations of memory consistency models for shared�
memory multiprocessors� In Proceedings of the �th International Conference on Architectural

Support for Programming Languages and Systems� April 	��	�

�	� B�D� Fleisch and G�J� Popek� Mirage� A coherent distributed shared memory design� In
Proceedings of the Twelfth ACM Symposium on Operating Systems Principles� pages �		����
December 	����

�	� D� Gelernter� Generative communication in Linda� ACM Transactions on Programming

Languages and Systems� ��	�����		�� January 	����

��



�	� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta� and J� Hennessy� Memory
consistency and event ordering in scalable shared�memory multiprocessors� In Proceedings of

the ��th Annual International Symposium on Computer Architecture� pages 	����� Seattle�
Washington� May 	����

��� J�R� Goodman� M�K� Vernon� and P�J� Woest� E�cient synchronization primitives for large�
scale cache�coherent multiprocessor� In Proceedings of the �rd International Conference on

Architectural Support for Programming Languages and Systems� pages ������ April 	����

��	 D� Hensgen� R� Finkel� and U� Manber� Two algorithms for barrier synchronization� Inter�

national Journal of Parallel Programming� 	��	��	�	�� January 	����

��� L� Lamport� How to make a multiprocessor computer that correctly executes multiprocess
programs� IEEE Transactions on Computers� C�������������	� September 	����

��� D� Lenoski� J� Laudon� K� Gharachorloo� A� Gupta� and J� Hennessy� The directory�based
cache coherence protocol for the DASH multiprocessor� In Proceedings of the ��th Annual

International Symposium on Computer Architecture� pages 	���	��� May 	����

��� K� Li� Shared Virtual Memory on Loosely Coupled Multiprocessors� PhD thesis� Yale Univer�
sity� September 	����

��� K� Li and P� Hudak� Memory coherence in shared virtual memory systems� ACM Transac�

tions on Computer Systems� �������	����� November 	����

��� J�M� Mellor�Crummey and M�L� Scott� Synchronization without contention� In Proceedings

of the �th International Conference on Architectural Support for Programming Languages and

Systems� pages �������� April 	��	�

��� U� Ramachandran� M� Ahamad� and M�Y� Khalidi� Unifying synchronization and data trans�
fer in maintaining coherence of distributed shared memory� Technical Report GIT�CS�������
Georgia Institute of Technology� June 	����

��� R� Rashid� A� Tevanian� Jr� M� Young� D� Golub� R� Baron� D� Black� W� Bolosky� and
J� Chew� Machine�independent virtual memory management for paged uniprocessor and
multiprocessor architectures� IEEE Transactions on Computers� �������������� August 	����

��� W��D� Weber and A� Gupta� Analysis of cache invalidation patterns in multiprocessors� In
Proceedings of the �rd International Conference on Architectural Support for Programming

Languages and Systems� pages �������� April 	����

��� H�P� Zima� H�J� Bast� and M� Gerndt� Superb� A tool for semi�automatic SIMD�MIMD
parallelization� Parallel Computing� ��	�	�� 	����

��


