10 research outputs found

    Quantum-well states in ultrathin Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Ag(111) films were deposited at room temperature onto H-passivated Si(111)-(1x1) substrates, and subsequently annealed at 300 C. An abrupt non-reactive Ag/Si interface is formed, and very uniform non-strained Ag(111) films of 6-12 monolayers have been grown. Angle resolved photoemission spectroscopy has been used to study the valence band electronic properties of these films. Well-defined Ag sp quantum-well states (QWS) have been observed at discrete energies between 0.5-2eV below the Fermi level, and their dispersions have been measured along the GammaK, GammaMM'and GammaL symmetry directions. QWS show a parabolic bidimensional dispersion, with in-plane effective mass of 0.38-0.50mo, along the GammaK and GammaMM' directions, whereas no dispersion has been found along the GammaL direction, indicating the low-dimensional electronic character of these states. The binding energy dependence of the QWS as a function of Ag film thickness has been analyzed in the framework of the phase accumulation model. According to this model, a reflectivity of 70% has been estimated for the Ag-sp states at the Ag/H/Si(111)-(1x1) interface.Comment: 6 pages, 6 figures, submitted to Phys. Rev.

    Combined Transmission Electron Microscopy and Cathodoluminecence Studies of Degradation in Electron-Beam-Pumped Zn1-Xcdxse/Znse Blue-Green Lasers

    No full text
    We explored degradation in electron-beam-pumped Zn1-xCdxSe/ZnSc laser structures by combining cathodoluminescence (CL) measurements in a scanning electron microscope with transmission electron microscopy. The rate of degradation, measured ad the decrease of the emitted CL intensity under electron bombardment, depends critically on the threading dislocation density and on the strain the quantum well. Degradation occurs via the formation of dark spot defects, which are related to bombardment-induced neworks of dislocation loops in the quantum well. These degradation defects often initiate where threading dislocations cross the quantum well. We propose a self-supporting dislocation climb mechanism activated by nonradiative recombination to explain the formation and propagation of the degradation defect
    corecore