22 research outputs found

    Spin injection and electric field effect in degenerate semiconductors

    Full text link
    We analyze spin-transport in semiconductors in the regime characterized by T∼<TFT\stackrel{<}{\sim}T_F (intermediate to degenerate), where TFT_F is the Fermi temperature. Such a regime is of great importance since it includes the lightly doped semiconductor structures used in most experiments; we demonstrate that, at the same time, it corresponds to the regime in which carrier-carrier interactions assume a relevant role. Starting from a general formulation of the drift-diffusion equations, which includes many-body correlation effects, we perform detailed calculations of the spin injection characteristics of various heterostructures, and analyze the combined effects of carrier density variation, applied electric field and Coulomb interaction. We show the existence of a degenerate regime, peculiar to semiconductors, which strongly differs, as spin-transport is concerned, from the degenerate regime of metals.Comment: Version accepted for publication in Phys. Rev.

    Spin-based quantum information processing with semiconductor quantum dots and cavity QED

    Get PDF
    A quantum information processing scheme is proposed with semiconductor quantum dots located in a high-Q single mode QED cavity. The spin degrees of freedom of one excess conduction electron of the quantum dots are employed as qubits. Excitonic states, which can be produced ultrafastly with optical operation, are used as auxiliary states in the realization of quantum gates. We show how properly tailored ultrafast laser pulses and Pauli-blocking effects, can be used to achieve a universal encoded quantum computing.Comment: RevTex, 2 figure

    Thermal history of the string universe

    Full text link
    Thermal history of the string universe based on the Brandenberger and Vafa's scenario is examined. The analysis thereby provides a theoretical foundation of the string universe scenario. Especially the picture of the initial oscillating phase is shown to be natural from the thermodynamical point of view. A new tool is employed to evaluate the multi state density of the string gas. This analysis points out that the well-known functional form of the multi state density is not applicable for the important region T≤THT \leq T_H, and derives a correct form of it.Comment: 39 pages, no figures, use revtex.sty, aps.sty, aps10.sty & preprint.st

    Spin interactions and switching in vertically tunnel-coupled quantum dots

    Full text link
    We determine the spin exchange coupling J between two electrons located in two vertically tunnel-coupled quantum dots, and its variation when magnetic (B) and electric (E) fields (both in-plane and perpendicular) are applied. We predict a strong decrease of J as the in-plane B field is increased, mainly due to orbital compression. Combined with the Zeeman splitting, this leads to a singlet-triplet crossing, which can be observed as a pronounced jump in the magnetization at in-plane fields of a few Tesla, and perpendicular fields of the order of 10 Tesla for typical self-assembled dots. We use harmonic potentials to model the confining of electrons, and calculate the exchange J using the Heitler-London and Hund-Mulliken technique, including the long-range Coulomb interaction. With our results we provide experimental criteria for the distinction of singlet and triplet states and therefore for microscopic spin measurements. In the case where dots of different sizes are coupled, we present a simple method to switch on and off the spin coupling with exponential sensitivity using an in-plane electric field. Switching the spin coupling is essential for quantum computation using electronic spins as qubits.Comment: 13 pages, 9 figure

    Transcriptome Analysis of Orbital Adipose Tissue in Active Thyroid Eye Disease Using Next Generation RNA Sequencing Technology

    No full text
    ObjectiveThis study utilized Next Generation Sequencing (NGS) to identify differentially expressed transcripts in orbital adipose tissue from patients with active Thyroid Eye Disease (TED) versus healthy controls.MethodThis prospective, case-control study enrolled three patients with severe, active thyroid eye disease undergoing orbital decompression, and three healthy controls undergoing routine eyelid surgery with removal of orbital fat. RNA Sequencing (RNA-Seq) was performed on freshly obtained orbital adipose tissue from study patients to analyze the transcriptome. Bioinformatics analysis was performed to determine pathways and processes enriched for the differential expression profile. Quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR) was performed to validate the differential expression of selected genes identified by RNA-Seq.ResultsRNA-Seq identified 328 differentially expressed genes associated with active thyroid eye disease, many of which were responsible for mediating inflammation, cytokine signaling, adipogenesis, IGF-1 signaling, and glycosaminoglycan binding. The IL-5 and chemokine signaling pathways were highly enriched, and very-low-density-lipoprotein receptor activity and statin medications were implicated as having a potential role in TED.ConclusionThis study is the first to use RNA-Seq technology to elucidate differential gene expression associated with active, severe TED. This study suggests a transcriptional basis for the role of statins in modulating differentially expressed genes that mediate the pathogenesis of thyroid eye disease. Furthermore, the identification of genes with altered levels of expression in active, severe TED may inform the molecular pathways central to this clinical phenotype and guide the development of novel therapeutic agents
    corecore