1,276 research outputs found
An anisotropic cosmological model with isotropic background radiation
We present an exact solution of Einstein equations that describes a Bianchi
type III spacetime with conformal expansion. The matter content is given by an
anisotropic scalar field and two perfect fluids representing dust and isotropic
radiation. Based on this solution, we construct a cosmological model that
respects the evolution of the scale factor predicted in standard cosmology.Comment: 4 pages; contribution to the Proceedings of the 24th Spanish
Relativity Meeting (ERE2001
The weight of matter
Einstein's traceless 1919 gravitational theory is analyzed from a variational
viewpoint. It is shown to be equivalent to a transverse (invariant only under
diffeomorphisms that preserve the Lebesgue measure) theory, with an additional
Weyl symmetry, in which the gauge is partially fixed so that the metric becomes
unimodular. In spite of the fact that this symmetry forbids direct coupling of
the potential energy with the gravitational sector, the equivalence principle
is recovered in the unimodular gauge owing to Bianchi's identities.Comment: LaTeX, 11 page
Asymptotic directional structure of radiation for fields of algebraic type D
The directional behavior of dominant components of algebraically special
spin-s fields near a spacelike, timelike or null conformal infinity is studied.
By extending our previous general investigations we concentrate on fields which
admit a pair of equivalent algebraically special null directions, such as the
Petrov type D gravitational fields or algebraically general electromagnetic
fields. We introduce and discuss a canonical choice of the reference tetrad
near infinity in all possible situations, and we present the corresponding
asymptotic directional structures using the most natural parametrizations.Comment: 20 pages, 6 figure
Reply Comment: Comparison of Approaches to Classical Signature Change
We contrast the two approaches to ``classical" signature change used by
Hayward with the one used by us (Hellaby and Dray). There is (as yet) no
rigorous derivation of appropriate distributional field equations. Hayward's
distributional approach is based on a postulated modified form of the field
equations. We make an alternative postulate. We point out an important
difference between two possible philosophies of signature change --- ours is
strictly classical, while Hayward's Lagrangian approach adopts what amounts to
an imaginary proper ``time" on one side of the signature change, as is
explicitly done in quantum cosmology. We also explain why we chose to use the
Darmois-Israel type junction conditions, rather than the Lichnerowicz type
junction conditions favoured by Hayward. We show that the difference in results
is entirely explained by the difference in philosophy (imaginary versus real
Euclidean ``time"), and not by the difference in approach to junction
conditions (Lichnerowicz with specific coordinates versus Darmois with general
coordinates).Comment: 10 pages, latex, no figures. Replying to - "Comment on `Failure of
Standard Conservation Laws at a Classical Change of Signature'", S.A.
Hayward, Phys. Rev. D52, 7331-7332 (1995) (gr-qc/9606045
Exponential-Potential Scalar Field Universes I: The Bianchi I Models
We obtain a general exact solution of the Einstein field equations for the
anisotropic Bianchi type I universes filled with an exponential-potential
scalar field and study their dynamics. It is shown, in agreement with previous
studies, that for a wide range of initial conditions the late-time behaviour of
the models is that of a power-law inflating FRW universe. This property, does
not hold, in contrast, when some degree of inhomogeneity is introduced, as
discussed in our following paper II.Comment: 16 pages, Plain LaTeX, 1 Figure to be sent on request, to appear in
Phys. Rev.
The Footprint of F-theory at the LHC
Recent work has shown that compactifications of F-theory provide a
potentially attractive phenomenological scenario. The low energy
characteristics of F-theory GUTs consist of a deformation away from a minimal
gauge mediation scenario with a high messenger scale. The soft scalar masses of
the theory are all shifted by a stringy effect which survives to low energies.
This effect can range from 0 GeV up to ~ 500 GeV. In this paper we study
potential collider signatures of F-theory GUTs, focussing in particular on ways
to distinguish this class of models from other theories with an MSSM spectrum.
To accomplish this, we have adapted the general footprint method developed
recently for distinguishing broad classes of string vacua to the specific case
of F-theory GUTs. We show that with only 5 fb^(-1) of simulated LHC data, it is
possible to distinguish many mSUGRA models and low messenger scale gauge
mediation models from F-theory GUTs. Moreover, we find that at 5 fb^(-1), the
stringy deformation away from minimal gauge mediation produces observable
consequences which can also be detected to a level of order ~ +/- 80 GeV. In
this way, it is possible to distinguish between models with a large and small
stringy deformation. At 50 fb^(-1), this improves to ~ +/- 10 GeV.Comment: 85 pages, 37 figure
Towards a transferable and cost-effective plant AFLP protocol
Amplified fragment length polymorphism (AFLP) is a powerful fingerprinting technique that is widely applied in ecological and population genetic studies. However, its routine use has been limited by high costs associated with the optimization of
fluorescently labelled markers, especially for individual study systems. Here we develop a low-cost AFLP protocol that can be easily transferred between distantly related plant taxa. Three fluorescently labelled EcoRI-primers with anchors that target interspecifically conserved genomic regions were used in combination with a single non-labelled primer in our AFLP protocol. The protocol was used to genotype one gymnosperm, two monocot and three eudicot plant genera representing four invasive and four native angiosperm species (Pinus pinaster (Pinaceae), Pennisetum setaceum and Poa annua (Poaceae), Lantana camara (Verbenaceae), Bassia diffusa (Chenopodiaceae), Salvia lanceolata, Salvia africana-lutea, and Salvia africanacaerulea (Lamiaceae)). Highly polymorphic and reproducible genotypic fingerprints (between 37–144 polymorphic loci per species tested) were obtained for all taxa tested. Our single protocol was easily transferred between distantly related taxa.
Measures of expected heterozygosity ranged from 0.139 to 0.196 for P. annua and from 0.168 to 0.272 for L. camara which compared well with previously published reports. In addition to ease of transferability of a single AFLP protocol, our protocol reduces costs associated with commercial kits by almost half. The use of highly conserved but abundant anchor sequences reduces the need for laborious screening for usable primers that result in polymorphic fingerprints, and appears to be the main reason for ease of transferability of our protocol between distantly related taxa
Study of the dependence of 198Au half-life on source geometry
We report the results of an experiment to determine whether the half-life of
\Au{198} depends on the shape of the source. This study was motivated by recent
suggestions that nuclear decay rates may be affected by solar activity, perhaps
arising from solar neutrinos. If this were the case then the -decay
rates, or half-lives, of a thin foil sample and a spherical sample of gold of
the same mass and activity could be different. We find for \Au{198},
, where
is the mean half-life. The maximum neutrino flux at the sample in our
experiments was several times greater than the flux of solar neutrinos at the
surface of the Earth. We show that this increase in flux leads to a significant
improvement in the limits that can be inferred on a possible solar contribution
to nuclear decays.Comment: 5 pages, 1 figur
Failure of Standard Conservation Laws at a Classical Change of Signature
The Divergence Theorem as usually stated cannot be applied across a change of
signature unless it is re-expressed to allow for a finite source term on the
signature change surface. Consequently all conservation laws must also be
`modified', and therefore insistence on conservation of matter across such a
surface cannot be physically justified. The Darmois junction conditions
normally ensure conservation of matter via Israel's identities for the jump in
the energy-momentum density, but not when the signature changes. Modified
identities are derived for this jump when a signature change occurs, and the
resulting surface effects in the conservation laws are calculated. In general,
physical vector fields experience a jump in at least one component, and a
source term may therefore appear in the corresponding conservation law. Thus
current is also not conserved. These surface effects are a consequence of the
change in the character of physical law. The only way to recover standard
conservation laws is to impose restrictions that no realistic cosmological
model can satisfy.Comment: 15pp, figures available on request from Charles Hellaby at
[email protected]
Generalized Quantum Theory of Recollapsing Homogeneous Cosmologies
A sum-over-histories generalized quantum theory is developed for homogeneous
minisuperspace type A Bianchi cosmological models, focussing on the particular
example of the classically recollapsing Bianchi IX universe. The decoherence
functional for such universes is exhibited. We show how the probabilities of
decoherent sets of alternative, coarse-grained histories of these model
universes can be calculated. We consider in particular the probabilities for
classical evolution defined by a suitable coarse-graining. For a restricted
class of initial conditions and coarse grainings we exhibit the approximate
decoherence of alternative histories in which the universe behaves classically
and those in which it does not. For these situations we show that the
probability is near unity for the universe to recontract classically if it
expands classically. We also determine the relative probabilities of
quasi-classical trajectories for initial states of WKB form, recovering for
such states a precise form of the familiar heuristic "J d\Sigma" rule of
quantum cosmology, as well as a generalization of this rule to generic initial
states.Comment: 41 pages, 4 eps figures, revtex 4. Modest revisions throughout.
Physics unchanged. To appear in Phys. Rev.
- …