1,144 research outputs found

    The M Theory Five-Brane and the Heterotic String

    Get PDF
    Brane actions with chiral bosons present special challenges. Recent progress in the description of the two main examples -- the M theory five-brane and the heterotic string -- is described. Also, double dimensional reduction of the M theory five-brane on K3 is shown to give the heterotic string.Comment: 13 pages, latex, no figures; ICTP Conference Proceeding

    Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives

    Full text link
    Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/1/ele13402-sup-0001-TableS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/2/ele13402_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/3/ele13402-sup-0007-TableS7.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/4/ele13402-sup-0003-TableS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/5/ele13402-sup-0005-TableS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/6/ele13402.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/7/ele13402-sup-0006-TableS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/8/ele13402-sup-0002-TableS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/9/ele13402-sup-0004-TableS4.pd

    Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States, and Hierarchy

    Full text link
    We present three holographic constructions of fractional quantum Hall effect (FQHE) via string theory. The first model studies edge states in FQHE using supersymmetric domain walls in N=6 Chern-Simons theory. We show that D4-branes wrapped on CP^1 or D8-branes wrapped on CP^3 create edge states that shift the rank or the level of the gauge group, respectively. These holographic edge states correctly reproduce the Hall conductivity. The second model presents a holographic dual to the pure U(N)_k (Yang-Mills-)Chern-Simons theory based on a D3-D7 system. Its holography is equivalent to the level-rank duality, which enables us to compute the Hall conductivity and the topological entanglement entropy. The third model introduces the first string theory embedding of hierarchical FQHEs, using IIA string on C^2/Z_n.Comment: 36 pages, 6 figures; v2: with an improved derivation of Hall conductivity in section 3.2, typo corrections, and additional references; v3: explanations and comments adde

    Advances in the genetic classification of amyotrophic lateral sclerosis

    Get PDF
    Purpose of review Amyotrophic lateral sclerosis (ALS) is an archetypal complex disease wherein disease risk and severity are, for the majority of patients, the product of interaction between multiple genetic and environmental factors. We are in a period of unprecedented discovery with new large-scale genome-wide association study (GWAS) and accelerating discovery of risk genes. However, much of the observed heritability of ALS is undiscovered and we are not yet approaching elucidation of the total genetic architecture, which will be necessary for comprehensive disease subclassification. Recent findings We summarize recent developments and discuss the future. New machine learning models will help to address nonlinear genetic interactions. Statistical power for genetic discovery may be boosted by reducing the search-space using cell-specific epigenetic profiles and expanding our scope to include genetically correlated phenotypes. Structural variation, somatic heterogeneity and consideration of environmental modifiers represent significant challenges which will require integration of multiple technologies and a multidisciplinary approach, including clinicians, geneticists and pathologists. Summary The move away from fully penetrant Mendelian risk genes necessitates new experimental designs and new standards for validation. The challenges are significant, but the potential reward for successful disease subclassification is large-scale and effective personalized medicine

    Solar Intranetwork Magnetic Elements: bipolar flux appearance

    Full text link
    The current study aims to quantify characteristic features of bipolar flux appearance of solar intranetwork (IN) magnetic elements. To attack such a problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and an enhanced network areas. Cluster emergence of mixed polarities and IN ephemeral regions (ERs) are the most conspicuous forms of bipolar flux appearance within the network. Each of the clusters is characterized by a few well-developed ERs that are partially or fully co-aligned in magnetic axis orientation. On average, the sampled IN ERs have total maximum unsigned flux of several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes. The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx, separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN ERs exhibit a rotation of their magnetic axis of more than 10 degrees during flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by growth or the reverse, is not unusual. A few examples show repeated shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic photosphere. The observed bipolar behavior seems to carry rich information on magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure

    Decay of Unstable D-branes with Electric Field

    Get PDF
    Using the techniques of two dimensional conformal field theory we construct time dependent classical solutions in open string theory describing the decay of an unstable D-brane in the presence of background electric field, and explicitly evaluate the time dependence of the energy momentum tensor and the fundamental string charge density associated with this solution. The final decay product can be interpreted as a combination of stretched fundamental strings and tachyon matter.Comment: 35 pages, LaTe

    Baryon number violation, baryogenesis and defects with extra dimensions

    Full text link
    In generic models for grand unified theories(GUT), various types of baryon number violating processes are expected when quarks and leptons propagate in the background of GUT strings. On the other hand, in models with large extra dimensions, the baryon number violation in the background of a string is not trivial because it must depend on the mechanism of the proton stabilization. In this paper we argue that cosmic strings in models with extra dimensions can enhance the baryon number violation to a phenomenologically interesting level, if the proton decay is suppressed by the mechanism of localized wavefunctions. We also make some comments on baryogenesis mediated by cosmological defects. We show at least two scenarios will be successful in this direction. One is the scenario of leptogenesis where the required lepton number conversion is mediated by cosmic strings, and the other is the baryogenesis from the decaying cosmological domain wall. Both scenarios are new and have not been discussed in the past.Comment: 20pages, latex2e, comments and references added, to appear in PR

    Numerical properties of isotrivial fibrations

    Get PDF
    In this paper we investigate the numerical properties of relatively minimal isotrivial fibrations \varphi \colon X \lr C, where XX is a smooth, projective surface and CC is a curve. In particular we prove that, if g(C)1g(C) \geq 1 and XX is neither ruled nor isomorphic to a quasi-bundle, then K_X^2 \leq 8 \chi(\mO_X)-2; this inequality is sharp and if equality holds then XX is a minimal surface of general type whose canonical model has precisely two ordinary double points as singularities. Under the further assumption that KXK_X is ample, we obtain K_X^2 \leq 8 \chi(\mO_X)-5 and the inequality is also sharp. This improves previous results of Serrano and Tan.Comment: 30 pages. Final version, to appear in Geometriae Dedicat

    Magnetic fields in cosmic particle acceleration sources

    Full text link
    We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. We discuss a number of CR-driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review

    Athlete experiences of disordered eating in sport

    Get PDF
    To date, research into disordered eating in sport has focused on the prevalence and the identification of putative risk factors. Findings suggest that elite female athletes participating in sports with a focus on leanness or aesthetics are at greatest risk. A paucity of research remains as to the period after onset and how existing sufferers manage their illness over time. In line with the principles of interpretative phenomenological analysis (IPA), this study 'gives voice' to four athletes who have experienced disordered eating, documenting their personal accounts and interpreting these accounts from a psychological perspective. In‐depth, semi‐structured interviews were conducted and verbatim transcripts were analysed according to the procedures of IPA. Three superordinate themes emerged from the data: the struggle to disclose, social support needs and identity challenges. Athletes' stories provided rich descriptions of their subjective disordered eating experiences. Their accounts give critical insight into the impact of eating disturbance on the lives of athletes. Future research should continue to identify athletes with existing eating problems in order to improve understanding as to how such individuals can best be helped
    corecore