25 research outputs found

    The Single-Particle Spectral Function of 16O^{16}{\rm O}

    Full text link
    The influence of short-range correlations on the pp-wave single-particle spectral function in 16O^{16}{\rm O} is studied as a function of energy. This influence, which is represented by the admixture of high-momentum components, is found to be small in the pp-shell quasihole wave functions. It is therefore unlikely that studies of quasihole momentum distributions using the (e,ep)(e,e'p) reaction will reveal a significant contribution of high momentum components. Instead, high-momentum components become increasingly more dominant at higher excitation energy. The above observations are consistent with the energy distribution of high-momentum components in nuclear matter.Comment: 5 pages, RevTeX, 3 figure

    Analytic theory of ground-state properties of a three-dimensional electron gas at varying spin polarization

    Full text link
    We present an analytic theory of the spin-resolved pair distribution functions gσσ(r)g_{\sigma\sigma'}(r) and the ground-state energy of an electron gas with an arbitrary degree of spin polarization. We first use the Hohenberg-Kohn variational principle and the von Weizs\"{a}cker-Herring ideal kinetic energy functional to derive a zero-energy scattering Schr\"{o}dinger equation for gσσ(r)\sqrt{g_{\sigma\sigma'}(r)}. The solution of this equation is implemented within a Fermi-hypernetted-chain approximation which embodies the Hartree-Fock limit and is shown to satisfy an important set of sum rules. We present numerical results for the ground-state energy at selected values of the spin polarization and for gσσ(r)g_{\sigma\sigma'}(r) in both a paramagnetic and a fully spin-polarized electron gas, in comparison with the available data from Quantum Monte Carlo studies over a wide range of electron density.Comment: 13 pages, 8 figures, submitted to Phys. Rev.

    Many-body aspects of positron annihilation in the electron gas

    Full text link
    We investigate positron annihilation in electron liquid as a case study for many-body theory, in particular the optimized Fermi Hypernetted Chain (FHNC-EL) method. We examine several approximation schemes and show that one has to go up to the most sophisticated implementation of the theory available at the moment in order to get annihilation rates that agree reasonably well with experimental data. Even though there is basically just one number to look at, the electron-positron pair distribution function at zero distance, it is exactly this number that dictates how the full pair distribution behaves: In most cases, it falls off monotonously towards unity as the distance increases. Cases where the electron-positron pair distribution exhibits a dip are precursors to the formation of bound electron--positron pairs. The formation of electron-positron pairs is indicated by a divergence of the FHNC-EL equations, from this we can estimate the density regime where positrons must be localized. This occurs in our calculations in the range 9.4 <= r_s <=10, where r_s is the dimensionless density parameter of the electron liquid.Comment: To appear in Phys. Rev. B (2003

    Realistic Model of the Nucleon Spectral Function in Few- and Many- Nucleon Systems

    Get PDF
    By analysing the high momentum features of the nucleon momentum distribution in light and complex nuclei, it is argued that the basic two-nucleon configurations generating the structure of the nucleon Spectral Function at high values of the nucleon momentum and removal energy, can be properly described by a factorised ansatz for the nuclear wave function, which leads to a nucleon Spectral Function in the form of a convolution integral involving the momentum distributions describing the relative and center-of-mass motion of a correlated nucleon-nucleon pair embedded in the medium. The Spectral Functions of 3He^3He and infinite nuclear matter resulting from the convolution formula and from many-body calculations are compared, and a very good agreement in a wide range of values of nucleon momentum and removal energy is found. Applications of the model to the analysis of inclusive and exclusive processes are presented, illustrating those features of the cross section which are sensitive to that part of the Spectral Function which is governed by short-range and tensor nucleon-nucleon correlations.Comment: 40 pages Latex , 16 ps figures available from the above e-mail address or from [email protected]

    Δ(1232)\Delta(1232) Isobar Excitations and the Ground State of Nuclei

    Full text link
    The influence of Δ\Delta isobar components on the ground state properties of nuclear systems is investigated for nuclear matter as well as finite nuclei. Many-body wave functions, including isobar configurations, and binding energies are evaluated employing the framework of the coupled-cluster theory. It is demonstrated that the effect of isobar configurations depends in a rather sensitive way on the model used for the baryon-baryon interaction. As examples for realistic baryon-baryon interactions with explicit inclusion of isobar channels we use the local (V28V28) and non-local meson exchange potentials (Bonn2000_{2000}) but also a model recently developed by the Salamanca group, which is based on a quark picture. The differences obtained for the nuclear observables are related to the treatment of the interaction, the π\pi-exchange contributions in particular, at high momentum transfers.Comment: 12 pages, including 5 figure

    Translationally invariant calculations of form factors, nucleon densities and momentum distributions for finite nuclei with short-range correlations included

    Full text link
    Relying upon our previous treatment of the density matrices for nuclei (in general, nonrelativistic self-bound finite systems) we are studying a combined effect of center-of-mass motion and short-range nucleon-nucleon correlations on the nucleon density and momentum distributions in light nuclei (4He^{4}He and 16O^{16}O). Their intrinsic ground-state wave functions are constructed in the so-called fixed center-of-mass approximation, starting with mean-field Slater determinants modified by some correlator (e.g., after Jastrow or Villars). We develop the formalism based upon the Cartesian or boson representation, in which the coordinate and momentum operators are linear combinations of the creation and annihilation operators for oscillatory quanta in the three different space directions, and get the own "Tassie-Barker" factors for each distribution and point out other model-independent results. After this separation of the center-of-mass motion effects we propose additional analytic means in order to simplify the subsequent calculations (e.g., within the Jastrow approach or the unitary correlation operator method). The charge form factors, densities and momentum distributions of 4He^{4}He and 16O^{16}O evaluated by using the well known cluster expansions are compared with data, our exact (numerical) results and microscopic calculations.Comment: 19 pages, 6 figure

    The nuclear collective motion

    Full text link
    Current developments in nuclear structure are discussed from a theoretical perspective. First, the progress in theoretical modeling of nuclei is reviewed. This is followed by the discussion of nuclear time scales, nuclear collective modes, and nuclear deformations. Some perspectives on nuclear structure research far from stability are given. Finally, interdisciplinary aspects of the nuclear many-body problem are outlined
    corecore