107 research outputs found
Acid-adaption by a medic microsymbiont: new insights from the genome of Sinorhizobium medicae WSM419
The poor availability of nitrogen is one of the principal factors limiting global biomass. Legumes are vital components of agricultural systems because of their ability to associate symbiotically with root nodule bacteria (RNB) and subsequently fix atmospheric nitrogen to a form that can be utilised by the plant partner. Furthermore, this symbiotic relationship provides available soil nitrogen for subsequent non-leguminous crops. This RNB-legume interaction is affected by a number of environmental factors. Progressive acidification of agricultural soils is one of the big challenges in agriculture as soil acidity negatively impacts legume productivity. One genus of RNB, Sinorhizobium, is particularly acid-sensitive causing a major reduction in Medicago productivity in acidic soils. Due to the importance of Medic pasture production, alternative strains have been captured, and are still being captured, from the genetic pool that display superior acid tolerance characteristics. This presentation will focus on the acid-tolerant species S. medicae (previously known as S. meliloti) and in particular on the previously used commercial inoculant WSM419
The effects of an experimental programme to support students’ autonomy on the overt behaviours of physical education teachers
Although the benefits of autonomy supportive behaviours are now well established in the literature, very few studies have attempted to train teachers to offer a greater autonomy support to their students. In fact, none of these studies has been carried out in physical education (PE). The purpose of this study is to test the effects of an autonomy-supportive training on overt behaviours of teaching among PE teachers. The experimental group included two PE teachers who were first educated on the benefits of an autonomy supportive style and then followed an individualised guidance programme during the 8 lessons of a teaching cycle. Their behaviours were observed and rated along 3 categories (i.e., autonomy supportive, neutral and controlling) and were subsequently compared to those of three teachers who formed the control condition. The results showed that teachers in the experimental group used more autonomy supportive and neutral behaviours than those in the control group, but no difference emerged in relation to controlling behaviours. We discuss the implications for schools of our findings
Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419
Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome se-quence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951 bp, 1,245,408 bp and 219,313 bp. The smallest plasmid is a fea-ture unique to this medic microsymbiont
- …