703 research outputs found

    Hydrostatic and Physiologic Contributions to Intraocular Pressure Change During Postural Change

    Get PDF
    Many studies have observed that intraocular pressure (IOP) is dependent on tilt angle () during postural change. In this work, we aggregated 36 independent datasets from 30 published articles, representing 821 subjects, which reported data on IOP during postural change. From this data, we developed a generalized quantitative relationship between IOP and . We then compared the experimentally derived results to simulated predictions generated by our lumped parameter model of the eye, LPEye, considering only hydrostatic effects. The difference between the analytical and simulated values of IOP can be used to quantify the physiologic regulatory contribution

    Decay Modes of Intersecting Fluxbranes

    Get PDF
    Just as the single fluxbrane is quantum mechanically unstable to the nucleation of a locally charged spherical brane, so intersecting fluxbranes are unstable to various decay modes. Each individual element of the intersection can decay via the nucleation of a spherical brane, but uncharged spheres can also be nucleated in the region of intersection. For special values of the fluxes, however, intersecting fluxbranes are supersymmetric, and so are expected to be stable. We explicitly consider the instanton describing the decay modes of the two--element intersection (an F5-brane in the string theory context), and show that in dimensions greater than four the action for the decay mode of the supersymmetric intersection diverges. This observation allows us to show that stable intersecting fluxbranes should also exist in type 0A string theory.Comment: 19 pages, 6 figures. References adde

    Entropy in the RST Model

    Full text link
    The RST Model is given boundary term and Z-field so that it is well-posed and local. The Euclidean method is described for general theory and used to calculate the RST intrinsic entropy. The evolution of this entropy for the shockwave solutions is found and obeys a second law.Comment: 10 pages, minor revisions, published version in Late

    Neutron/proton ratio of nucleon emissions as a probe of neutron skin

    Full text link
    The dependence between neutron-to-proton yield ratio (RnpR_{np}) and neutron skin thickness (ÎŽnp\delta_{np}) in neutron-rich projectile induced reactions is investigated within the framework of the Isospin-Dependent Quantum Molecular Dynamics (IQMD) model. The density distribution of the Droplet model is embedded in the initialization of the neutron and proton densities in the present IQMD model. By adjusting the diffuseness parameter of neutron density in the Droplet model for the projectile, the relationship between the neutron skin thickness and the corresponding RnpR_{np} in the collisions is obtained. The results show strong linear correlation between RnpR_{np} and ÎŽnp\delta_{np} for neutron-rich Ca and Ni isotopes. It is suggested that RnpR_{np} may be used as an experimental observable to extract ÎŽnp\delta_{np} for neutron-rich nuclei, which is very significant to the study of the nuclear structure of exotic nuclei and the equation of state (EOS) of asymmetric nuclear matter.Comment: 7 pages, 5 figures; accepted by Phys. Lett.

    Two-dimensional quantum-corrected black hole in a finite size cavity

    Full text link
    We consider the gravitation-dilaton theory (not necessarily exactly solvable), whose potentials represent a generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity the field is in the Boulware state. We calculate quantum corrections to the Hawking temperature THT_{H}, with the contribution from the boundary taken into account. Vacuum polarization outside the shell tend to cool the system. We find that, for the shell to be in the thermal equilibrium, it cannot be placed too close to the horizon. The quantum corrections to the mass due to vacuum polarization vanish in spite of non-zero quantum stresses. We discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays a crucial role in some theories (e.g., CGHS), where it enables to define the stable canonical ensemble, whereas consideration in an infinite space would predict instability.Comment: 21 pages. In v.2 misprints corrected. To appear in Phys. Rev.

    A New Cosmological Scenario in String Theory

    Get PDF
    We consider new cosmological solutions with a collapsing, an intermediate and an expanding phase. The boundary between the expanding (collapsing) phase and the intermediate phase is seen by comoving observers as a cosmological past (future) horizon. The solutions are naturally embedded in string and M-theory. In the particular case of a two-dimensional cosmology, space-time is flat with an identification under boost and translation transformations. We consider the corresponding string theory orbifold and calculate the modular invariant one-loop partition function. In this case there is a strong parallel with the BTZ black hole. The higher dimensional cosmologies have a time-like curvature singularity in the intermediate region. In some cases the string coupling can be made small throughout all of space-time but string corrections become important at the singularity. This happens where string winding modes become light which could resolve the singularity. The new proposed space-time casual structure could have implications for cosmology, independently of string theory.Comment: 28 pages, 3 figures; v2: Added new subsection relating two-dimensional model to BTZ black hole, typos corrected and references added; v3: minor corrections, PRD versio

    Penrose Limits, Deformed pp-Waves and the String Duals of N=1 Large n Gauge Theory

    Full text link
    A certain conformally invariant N=1 supersymmetric SU(n) gauge theory has a description as an infra-red fixed point obtained by deforming the N=4 supersymmetric Yang-Mills theory by giving a mass to one of its N=1 chiral multiplets. We study the Penrose limit of the supergravity dual of the large n limit of this N=1 gauge theory. The limit gives a pp-wave with R-R five-form flux and both R-R and NS-NS three-form flux. We discover that this new solution preserves twenty supercharges and that, in the light-cone gauge, string theory on this background is exactly solvable. Correspondingly, this latter is the stringy dual of a particular large charge limit of the large n gauge theory. We are able to identify which operators in the field theory survive the limit to form the string's ground state and some of the spacetime excitations. The full string model, which we exhibit, contains a family of non-trivial predictions for the properties of the gauge theory operators which survive the limit.Comment: 39 pages, Late

    N=1* in 5 dimensions: Dijkgraaf-Vafa meets Polchinski-Strassler

    Full text link
    One of the powerful techniques to analyze the 5 dimensional Super Yang Mills theory with a massive hypermultiplet (N=1*) is provided by the AdS/CFT correspondence. It predicts that, for certain special values of the hypermultiplet mass, this theory develops nonperturbative branches of the moduli space as well as new light degrees of freedom. We use the higher dimensional generalization of the matrix model/gauge theory correspondence and recover all the prediction of the supergravity analysis. We construct the map between the four dimensional holomorphic superpotential and the five dimensional action and explicitly show that the superpotential is flat along the nonperturbative branches. This is the first instance in which the Dijkgraaf-Vafa method is used to analyze intrinsically higher dimensional phenomena.Comment: 28 pages, Late

    On unquenched N=2 holographic flavor

    Get PDF
    The addition of fundamental degrees of freedom to a theory which is dual (at low energies) to N=2 SYM in 1+3 dimensions is studied. The gauge theory lives on a stack of Nc D5 branes wrapping an S^2 with the appropriate twist, while the fundamental hypermultiplets are introduced by adding a different set of Nf D5-branes. In a simple case, a system of first order equations taking into account the backreaction of the flavor branes is derived (Nf/Nc is kept of order 1). From it, the modification of the holomorphic coupling is computed explicitly. Mesonic excitations are also discussed.Comment: 25 pages, 4 figure

    Strings in Gravimagnetic Fields

    Get PDF
    We provide a complete solution of closed strings propagating in Nappi-Witten space. Based on the analysis of geodesics we construct the coherent wavefunctions which approximate as closely as possible the classical trajectories. We then present a new free field realization of the current algebra using the gamma, beta ghost system. Finally we construct the quantum vertex operators, for the tachyon, by representing the wavefunctions in terms of the free fields. This allows us to compute the three- and four-point amplitudes, and propose the general result for N-point tachyon scattering amplitude.Comment: final version, 29 pages + 4 app
    • 

    corecore