6 research outputs found

    Formation of giant iron oxide-copper-gold deposits by superimposed, episodic hydrothermal pulses

    Get PDF
    Iron oxide-copper-gold deposits are a globally important source of copper, gold and critical commodities. However, they possess a range of characteristics related to a variety of tectono-magmatic settings that make development of a general genetic model challenging. Here we investigate micro-textural and compositional variations in actinolite, to constrain the thermal evolution of the Candelaria iron oxide-copper-gold deposit in Chile. We identify at least two mineralization stages comprising an early 675–800 °C iron oxide-apatite type mineralization overprinted by a later copper-rich fluid at around 550–700 °C. We propose that these distinct stages were caused by episodic pulses of injection of magmatic-hydrothermal fluids from crystallizing magmas at depth. We suggest that the mineralisation stages we identify were the result of temperature gradients attributable to changes in the magmatic source, rather than variations in formation depth, and that actinolite chemistry can be used as a proxy for formation temperature in iron oxide-copper-gold systems

    Absolute timing of sulfide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska

    No full text
    New Re-Os molybdenite dates from two lode gold deposits of the Tintina Gold Belt, Alaska, provide direct timing constraints for sulfide and gold mineralization. At Fort Knox, the Re-Os molybdenite date is identical to the U-Pb zircon age for the host intrusion, supporting an intrusive-related origin for the deposit. However, 40Ar/39Ar dates from hydrothermal and igneous mica are considerably younger. At the Pogo deposit, Re-Os molybdenite dates are also much older than 40Ar/39Ar dates from hydrothermal mica, but dissimilar to the age of local granites. These age relationships indicate that the Re-Os molybdenite method records the timing of sulfide and gold mineralization, whereas much younger 40Ar/39Ar dates are affected by post-ore thermal events, slow cooling, and/or systemic analytical effects. The results of this study complement a growing body of evidence to indicate that the Re-Os chronometer in molybdenite can be an accurate and robust tool for establishing timing relations in ore systems
    corecore