22 research outputs found

    Trends and natural variability of spring onset in the coterminous United States as evaluated by a new gridded dataset of spring indices

    No full text
    Abstract Climate change is expected to modify the timing of seasonal transitions this century, impacting wildlife migrations, ecosystem function, and agricultural activity. Tracking seasonal transitions in a consistent manner across space and through time requires indices that can be used for monitoring and managing biophysical and ecological systems during the coming decades. Here a new gridded dataset of spring indices is described and used to understand interannual, decadal, and secular trends across the coterminous United States. This dataset is derived from daily interpolated meteorological data, and the results are compared with historical station data to ensure the trends and variations are robust. Regional trends in the first leaf index range from −0.8 to −1.6 days decade−1, while first bloom index trends are between −0.4 and −1.2 for most regions. However, these trends are modulated by interannual to multidecadal variations, which are substantial throughout the regions considered here. These findings emphasize the important role large-scale climate modes of variability play in modulating spring onset on interannual to multidecadal time scales. Finally, there is some potential for successful subseasonal forecasts of spring onset, as indices from most regions are significantly correlated with antecedent large-scale modes of variability.</jats:p

    Developing a workflow to identify inconsistencies in volunteered geographic information : a phenological case study

    Get PDF
    Recent improvements in online information communication and mobile location-aware technologies have led to the production of large volumes of volunteered geographic information. Widespread, large-scale efforts by volunteers to collect data can inform and drive scientific advances in diverse fields, including ecology and climatology. Traditional workflows to check the quality of such volunteered information can be costly and time consuming as they heavily rely on human interventions. However, identifying factors that can influence data quality, such as inconsistency, is crucial when these data are used in modeling and decision-making frameworks. Recently developed workflows use simple statistical approaches that assume that the majority of the information is consistent. However, this assumption is not generalizable, and ignores underlying geographic and environmental contextual variability that may explain apparent inconsistencies. Here we describe an automated workflow to check inconsistency based on the availability of contextual environmental information for sampling locations. The workflow consists of three steps: (1) dimensionality reduction to facilitate further analysis and interpretation of results, (2) model-based clustering to group observations according to their contextual conditions, and (3) identification of inconsistent observations within each cluster. The workflow was applied to volunteered observations of flowering in common and cloned lilac plants (Syringa vulgaris and Syringa x chinensis) in the United States for the period 1980 to 2013. About 97% of the observations for both common and cloned lilacs were flagged as consistent, indicating that volunteers provided reliable information for this case study. Relative to the original dataset, the exclusion of inconsistent observations changed the apparent rate of change in lilac bloom dates by two days per decade, indicating the importance of inconsistency checking as a key step in data quality assessment for volunteered geographic information. Initiatives that leverage volunteered geographic information can adapt this workflow to improve the quality of their datasets and the robustness of their scientific analyses

    Below-ground competition between trees and grasses may overwhelm the facilitative effects of hydraulic lift

    No full text
    Contains fulltext : 60125.pdf (publisher's version ) (Closed access)Under large East African Acacia trees, which were known to show hydraulic lift, we experimentally tested whether tree roots facilitate grass production or compete with grasses for below-ground resources. Prevention of tree-grass interactions through root trenching led to increased soil water content indicating that trees took up more water from the topsoil than they exuded via hydraulic lift. Biomass was higher in trenched plots compared to controls probably because of reduced competition for water. Stable isotope analyses of plant and source water showed that grasses which competed with trees used a greater proportion of deep water compared with grasses in trenched plots. Grasses therefore used hydraulically lifted water provided by trees, or took up deep soil water directly by growing deeper roots when competition with trees occurred. We conclude that any facilitative effect of hydraulic lift for neighbouring species may easily be overwhelmed by water competition in (semi-) arid regions

    Rainfall, land use and woody vegetation cover change in semi-arid Australian savanna

    No full text
    * 1 The relative roles of climate and management for driving changes in woody cover in savannas over the past century are the subject of active debate. Perspectives arising from short-term, small-scale, local experiments are rarely tested over larger scales and longer time frames. * 2 Regression analysis and aerial photography were used to assess the relative importance of land-use history (fire and grazing), rainfall and initial woody cover (woody cover at the beginning of a sample period relative to the range of woody cover expressed within a land type) in accounting for rates of change in overstorey and understorey cover between the 1940s and 1990s in central Queensland, Australia. Analyses included 279 site-period combinations representing five semi-arid eucalypt savanna land-types within a 125 755 km2 region. * 3 Fire and grazing variables provided no explanatory power. In general, relative rainfall (rainfall for a given period standardized against mean annual rainfall) was positively related and initial woody cover negatively related to rates of change in both the overstorey and the understorey. The interaction between rainfall and initial woody cover was significant, reflecting the fact that increases in cover coincided with low initial cover when rainfall is higher than average, whereas decreases in cover typically occurred with high initial cover, regardless of rainfall. * 4 On average, overstorey and understorey cover increased over the second half of the 20th century. This pattern is consistent with the first half of the 20th century having more intense droughts and being drier overall than the relatively wet second half. * 5 The findings highlight the primary importance of interactions between rainfall fluctuations and density dependence as determinants of large-scale, long-term woody plant cover dynamics in savannas subject to large rainfall excess and deficit over multiyear time-scales
    corecore