745 research outputs found

    Entangled qutrits violate local realism stronger than qubits - an analytical proof

    Get PDF
    In Kaszlikowski [Phys. Rev. Lett. {\bf 85}, 4418 (2000)], it has been shown numerically that the violation of local realism for two maximally entangled NN-dimensional (3N3 \leq N) quantum objects is stronger than for two maximally entangled qubits and grows with NN. In this paper we present the analytical proof of this fact for N=3.Comment: 5 page

    A Bayesian view of the current status of dark matter direct searches

    Full text link
    Bayesian statistical methods offer a simple and consistent framework for incorporating uncertainties into a multi-parameter inference problem. In this work we apply these methods to a selection of current direct dark matter searches. We consider the simplest scenario of spin-independent elastic WIMP scattering, and infer the WIMP mass and cross-section from the experimental data with the essential systematic uncertainties folded into the analysis. We find that when uncertainties in the scintillation efficiency of Xenon100 have been accounted for, the resulting exclusion limit is not sufficiently constraining to rule out the CoGeNT preferred parameter region, contrary to previous claims. In the same vein, we also investigate the impact of astrophysical uncertainties on the preferred WIMP parameters. We find that within the class of smooth and isotropic WIMP velocity distributions, it is difficult to reconcile the DAMA and the CoGeNT preferred regions by tweaking the astrophysics parameters alone. If we demand compatibility between these experiments, then the inference process naturally concludes that a high value for the sodium quenching factor for DAMA is preferred.Comment: 37 pages, 14 figures and 7 tables. Replacement for matching the version accepted for publicatio

    Scalar Multiplet Dark Matter

    Full text link
    We perform a systematic study of the phenomenology associated to models where the dark matter consists in the neutral component of a scalar SU(2)_L n-uplet, up to n=7. If one includes only the pure gauge induced annihilation cross-sections it is known that such particles provide good dark matter candidates, leading to the observed dark matter relic abundance for a particular value of their mass around the TeV scale. We show that these values actually become ranges of values -which we determine- if one takes into account the annihilations induced by the various scalar couplings appearing in these models. This leads to predictions for both direct and indirect detection signatures as a function of the dark matter mass within these ranges. Both can be largely enhanced by the quartic coupling contributions. We also explain how, if one adds right-handed neutrinos to the scalar doublet case, the results of this analysis allow to have altogether a viable dark matter candidate, successful generation of neutrino masses, and leptogenesis in a particularly minimal way with all new physics at the TeV scale.Comment: 43 pages, 20 figure

    Q^\hat{Q} operator for canonical quantum gravity

    Full text link
    We study the properties of Q^[ω]\hat{Q}[\omega] operator on the kinematical Hilbert space H{\cal H} for canonical quantum gravity. Its complete spectrum with respect to the spin network basis is obtained. It turns out that Q^[ω]\hat{Q}[\omega] is diagonalized in this basis, and it is a well defined self-adjoint operator on H{\cal H}. The same conclusions are also tenable on the SU(2) gauge invariant Hilbert space with the gauge invariant spin network basis.Comment: 10 pages, minor modefication, reference update

    Chern-Simons Term for BF Theory and Gravity as a Generalized Topological Field Theory in Four Dimensions

    Get PDF
    A direct relation between two types of topological field theories, Chern-Simons theory and BF theory, is presented by using ``Generalized Differential Calculus'', which extends an ordinary p-form to an ordered pair of p and (p+1)-form. We first establish the generalized Chern-Weil homomormism for generalized curvature invariant polynomials in general even dimensional manifolds, and then show that BF gauge theory can be obtained from the action which is the generalized second Chern class with gauge group G. Particularly when G is taken as SL(2,C) in four dimensions, general relativity with cosmological constant can be derived by constraining the topological BF theory.Comment: Improved abstract and introduction with 11 references added. Accepted for publication in Physical Review

    The Structure of Nanoscale Polaron Correlations in La1.2Sr1.8Mn2O7

    Full text link
    A system of strongly-interacting electron-lattice polarons can exhibit charge and orbital order at sufficiently high polaron concentrations. In this study, the structure of short-range polaron correlations in the layered colossal magnetoresistive perovskite manganite, La1.2Sr1.8Mn2O7, has been determined by a crystallographic analysis of broad satellite maxima observed in diffuse X-ray and neutron scattering data. The resulting q=(0.3,0,1) modulation is a longitudinal octahedral-stretch mode, consistent with an incommensurate Jahn-Teller-coupled charge-density-wave fluctuations, that implies an unusual orbital-stripe pattern parallel to the directions.Comment: Reformatted with RevTe

    Work function changes in the double layered manganite La1.2Sr1.8Mn2O7

    Full text link
    We have investigated the behaviour of the work function of La1.2Sr1.8Mn2O7 as a function of temperature by means of photoemission. We found a decrease of 55 +/- 10 meV in going from 60 K to just above the Curie temperature (125 K) of the sample. Above T_C the work function appears to be roughly constant. Our results are exactly opposite to the work function changes calculated from the double-exchange model by Furukawa, but are consistent with other measurements. The disagreement with double-exchange can be explained using a general thermodynamic relation valid for second order transitions and including the extra processes involved in the manganites besides double-exchange interaction.Comment: 6 pages, 4 figures included in tex

    Effects of decoherence and errors on Bell-inequality violation

    Full text link
    We study optimal conditions for violation of the Clauser-Horne-Shimony-Holt form of the Bell inequality in the presence of decoherence and measurement errors. We obtain all detector configurations providing the maximal Bell inequality violation for a general (pure or mixed) state. We consider local decoherence which includes energy relaxation at the zero temperature and arbitrary dephasing. Conditions for the maximal Bell-inequality violation in the presence of decoherence are analyzed both analytically and numerically for the general case and for a number of important special cases. Combined effects of measurement errors and decoherence are also discussed.Comment: 18 pages, 5 figure

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure
    corecore