450 research outputs found
Spatiotemporal Stochastic Resonance in Fully Frustrated Josephson Ladders
We consider a Josephson-junction ladder in an external magnetic field with
half flux quantum per plaquette. When driven by external currents, periodic in
time and staggered in space, such a fully frustrated system is found to display
spatiotemporal stochastic resonance under the influence of thermal noise. Such
resonance behavior is investigated both numerically and analytically, which
reveals significant effects of anisotropy and yields rich physics.Comment: 8 pages in two columns, 8 figures, to appear in Phys. Rev.
Thermal Resonance in Signal Transmission
We use temperature tuning to control signal propagation in simple
one-dimensional arrays of masses connected by hard anharmonic springs and with
no local potentials. In our numerical model a sustained signal is applied at
one site of a chain immersed in a thermal environment and the signal-to-noise
ratio is measured at each oscillator. We show that raising the temperature can
lead to enhanced signal propagation along the chain, resulting in thermal
resonance effects akin to the resonance observed in arrays of bistable systems.Comment: To appear in Phys. Rev.
Autonomous stochastic resonance in fully frustrated Josephson-junction ladders
We investigate autonomous stochastic resonance in fully frustrated
Josephson-junction ladders, which are driven by uniform constant currents. At
zero temperature large currents induce oscillations between the two ground
states, while for small currents the lattice potential forces the system to
remain in one of the two states. At finite temperatures, on the other hand,
oscillations between the two states develop even below the critical current;
the signal-to-noise ratio is found to display array-enhanced stochastic
resonance. It is suggested that such behavior may be observed experimentally
through the measurement of the staggered voltage.Comment: 6 pages, 11 figures, to be published in Phys. Rev.
Higgs Boson Bounds in Three and Four Generation Scenarios
In light of recent experimental results, we present updated bounds on the
lightest Higgs boson mass in the Standard Model (SM) and in the Minimal
Supersymmetric extension of the Standard Model (MSSM). The vacuum stability
lower bound on the pure SM Higgs boson mass when the SM is taken to be valid up
to the Planck scale lies above the MSSM lightest Higgs boson mass upper bound
for a large amount of SUSY parameter space. If the lightest Higgs boson is
detected with a mass M_{H} < 134 GeV (150 GeV) for a top quark mass M_{top} =
172 GeV (179 GeV), it may indicate the existence of a fourth generation of
fermions. The region of inconsistency is removed and the MSSM is salvagable for
such values of M_{H} if one postulates the existence of a fourth generation of
leptons and quarks with isodoublet degenerate masses M_{L} and M_{Q} such that
60 GeV 170 GeV.Comment: 7 pages, 4 figures. To be published in Physical Review
NLO corrections to ultra-high energy neutrino-nucleon scattering, shadowing and small x
We reconsider the Standard Model interactions of ultra-high energy neutrinos
with matter. The next to leading order QCD corrections are presented for
charged-current and neutral-current processes. Contrary to popular
expectations, these corrections are found to be quite substantial, especially
for very large (anti-) neutrino energies. Hence, they need to be taken into
account in any search for new physics effects in high-energy neutrino
interactions. In our extrapolation of the parton densities to kinematical
regions as yet unexplored directly in terrestrial accelerators, we are guided
by double asymptotic scaling in the large Q^2 and small Bjorken x region and to
models of saturation in the low Q^2 and low x regime. The sizes of the
consequent uncertainties are commented upon. We also briefly discuss some
variables which are insensitive to higher order QCD corrections and are hence
suitable in any search for new physics.Comment: 21 pages, LaTeX2e, uses JHEP3.cls (included), 8 ps files for figures
published versio
Improved Effective Potential in Curved Spacetime and Quantum Matter - Higher Derivative Gravity Theory
\noindent{\large\bf Abstract.} We develop a general formalism to study the
renormalization group (RG) improved effective potential for renormalizable
gauge theories ---including matter--gravity--- in curved spacetime. The
result is given up to quadratic terms in curvature, and one-loop effective
potentials may be easiliy obtained from it. As an example, we consider scalar
QED, where dimensional transmutation in curved space and the phase structure of
the potential (in particular, curvature-induced phase trnasitions), are
discussed. For scalar QED with higher-derivative quantum gravity (QG), we
examine the influence of QG on dimensional transmutation and calculate QG
corrections to the scalar-to-vector mass ratio. The phase structure of the
RG-improved effective potential is also studied in this case, and the values of
the induced Newton and cosmological coupling constants at the critical point
are estimated. Stability of the running scalar coupling in the Yukawa theory
with conformally invariant higher-derivative QG, and in the Standard Model with
the same addition, is numerically analyzed. We show that, in these models, QG
tends to make the scalar sector less unstable.Comment: 23 pages, Oct 17 199
Three-generation flavor transitions and decays of supernova relic neutrinos
If neutrinos have mass, they can also decay. Decay lifetimes of cosmological
interest can be probed, in principle, through the detection of the redshifted,
diffuse neutrino flux produced by all past supernovae--the so-called supernova
relic neutrino (SRN) flux. In this work, we solve the SRN kinetic equations in
the general case of three-generation flavor transitions followed by invisible
(nonradiative) two-body decays. We then use the general solution to calculate
observable SRN spectra in some representative decay scenarios. It is shown
that, in the presence of decay, the SRN event rate can basically span the whole
range below the current experimental upper bound--a range accessible to future
experimental projects. Radiative SRN decays are also briefly discussed.Comment: 25 pages, including 7 figure
S4 Flavor Symmetry and Fermion Masses: Towards a Grand Unified theory of Flavor
Pursuing a bottom-up approach to explore which flavor symmetry could serve as
an explanation of the observed fermion masses and mixings, we discuss an
extension of the standard model (SM) where the flavor structure for both quarks
and leptons is determined by a spontaneously broken S4 and the requirement that
its particle content is embeddable simultaneously into the conventional SO(10)
grand unified theory (GUT) and a continuous flavor symmetry G_f like SO(3)_f or
SU(3)_f. We explicitly provide the Yukawa and the Higgs sector of the model and
show its viability in two numerical examples which arise as small deviations
from rank one matrices. In the first case, the corresponding mass matrix is
democratic and in the second one only its 2-3 block is non-vanishing. We
demonstrate that the Higgs potential allows for the appropriate vacuum
expectation value (VEV) configurations in both cases, if CP is conserved. For
the first case, the chosen Yukawa couplings can be made natural by invoking an
auxiliary Z2 symmetry. The numerical study we perform shows that the best-fit
values for the lepton mixing angles theta_12 and theta_23 can be accommodated
for normal neutrino mass hierarchy. The results for the quark mixing angles
turn out to be too small. Furthermore the CP-violating phase delta can only be
reproduced correctly in one of the examples. The small mixing angle values are
likely to be brought into the experimentally allowed ranges by including
radiative corrections. Interestingly, due to the S4 symmetry the mass matrix of
the right-handed neutrinos is proportional to the unit matrix.Comment: 27 pages, published version with minor change
Do solar neutrinos decay?
Despite the fact that the solar neutrino flux is now well-understood in the
context of matter-affected neutrino mixing, we find that it is not yet possible
to set a strong and model-independent bound on solar neutrino decays. If
neutrinos decay into truly invisible particles, the Earth-Sun baseline defines
a lifetime limit of \tau/m \agt 10^{-4} s/eV. However, there are many
possibilities which must be excluded before such a bound can be established.
There is an obvious degeneracy between the neutrino lifetime and the mixing
parameters. More generally, one must also allow the possibility of active
daughter neutrinos and/or antineutrinos, which may partially conceal the
characteristic features of decay. Many of the most exotic possibilities that
presently complicate the extraction of a decay bound will be removed if the
KamLAND reactor antineutrino experiment confirms the large-mixing angle
solution to the solar neutrino problem and measures the mixing parameters
precisely. Better experimental and theoretical constraints on the B
neutrino flux will also play a key role, as will tighter bounds on absolute
neutrino masses. Though the lifetime limit set by the solar flux is weak, it is
still the strongest direct limit on non-radiative neutrino decay. Even so,
there is no guarantee (by about eight orders of magnitude) that neutrinos from
astrophysical sources such as a Galactic supernova or distant Active Galactic
Nuclei will not decay.Comment: Very minor corrections, corresponds to published versio
Synchronization and resonance in a driven system of coupled oscillators
We study the noise effects in a driven system of globally coupled
oscillators, with particular attention to the interplay between driving and
noise. The self-consistency equation for the order parameter, which measures
the collective synchronization of the system, is derived; it is found that the
total order parameter decreases monotonically with noise, indicating overall
suppression of synchronization. Still, for large coupling strengths, there
exists an optimal noise level at which the periodic (ac) component of the order
parameter reaches its maximum. The response of the phase velocity is also
examined and found to display resonance behavior.Comment: 17 pages, 3 figure
- …