1,015 research outputs found

    SUSY-QCD decoupling properties in H+ -> t \bar b decay

    Full text link
    The SUSY-QCD radiative corrections to the \Gamma (H+ -> t \bar b) partial decay width are analyzed within the Minimal Supersymmetric Standard Model at the one-loop level, {\mathcal O}(\alpha_s), and in the decoupling limit. We present the analytical expressions of these corrections in the large SUSY masses limit and study the decoupling behaviour of these corrections in various limiting cases. We find that if the SUSY mass parameters are large and of the same order, the one loop SUSY-QCD corrections {\it do not decouple}. The non-decoupling contribution is enhanced by \tan \beta and therefore large corrections are expected in the large \tan \beta limit. In contrast, we also find that the SUSY-QCD corrections decouple if the masses of either the squarks or the gluinos are separately taken large.Comment: LaTeX, 33 pages, 7 figure included. Uses cite.st

    Phenomenological implications of light stop and higgsinos

    Get PDF
    We examine the phenomenological implications of light t~R\tilde{t}_R and higgsinos in the Minimal Supersymmetric Standard Model, assuming tan⁥2ÎČ<mt/mb\tan^2 \beta < m_t / m_b and heavy t~L\tilde{t}_L and gauginos. In this simplified setting, we study the contributions to ΔmBd\Delta m_{B_d}, Ï”K\epsilon_K, BR(b→sÎł)BR(b \rightarrow s \gamma), Rb≡Γ(Z→bb‟)/Γ(Z→hadrons)R_b \equiv \Gamma (Z \rightarrow b \overline{b}) / \Gamma ( Z \to {\rm hadrons}), BR(t→bW)BR(t \to b W), and their interplay.Comment: plain LATEX, 6 figures, 23 A4 page

    Electroweak Radiative Corrections to Neutral-Current Drell-Yan Processes at Hadron Colliders

    Get PDF
    We calculate the complete electroweak O(alpha) corrections to pp, pbar p -> l+l- X (l=e, mu) in the Standard Model of electroweak interactions. They comprise weak and photonic virtual one-loop corrections as well as real photon radiation to the parton-level processes q bar q -> gamma,Z -> l+l-. We study in detail the effect of the radiative corrections on the l+l- invariant mass distribution, the cross section in the Z boson resonance region, and on the forward-backward asymmetry, A_FB, at the Fermilab Tevatron and the CERN Large Hadron Collider. The weak corrections are found to increase the Z boson cross section by about 1%, but have little effect on the forward-backward asymmetry in the Z peak region. Threshold effects of the W box diagrams lead to pronounced effects in A_FB at m(l+l-) approx 160 GeV which, however, will be difficult to observe experimentally. At high di-lepton invariant masses, the non-factorizable weak corrections are found to become large.Comment: Revtex3 file, 39 pages, 2 tables, 12 figure

    Field theory models for variable cosmological constant

    Get PDF
    Anthropic solutions to the cosmological constant problem require seemingly unnatural scalar field potentials with a very small slope or domain walls (branes) with a very small coupling to a four-form field. Here we introduce a class of models in which the smallness of the corresponding parameters can be attributed to a spontaneously broken discrete symmetry. We also demonstrate the equivalence of scalar field and four-form models. Finally, we show how our models can be naturally embedded into a left-right extension of the standard model.Comment: A reference adde

    H^+ -> W^+ l_i^- l_j^+$ decay in the two Higgs doublet model

    Full text link
    We study the lepton flavor violating H^+ -> W^+ l_i^- l_j^+ and the lepton flavor conserving $H^+ -> W^+ l_i^- l_i^+ (l_i=\tau, l_j=\mu) decays in the general 2HDM, so called model III. We estimate the decay width \Gamma for LFV (LFC) at the order of the magnitude of (10^{-11}-10^{-5}) GeV ((10^{-9}-10^{-4}) GeV), for 200 GeV\leq m_{H^\pm}\leq 400 GeV, and the intermediate values of the coupling \bar{\xi}^{E}_{N,\tau \mu}\sim 5 GeV (\bar{\xi}^{E}_{N,\tau \tau}\sim 30 GeV). We observe that the experimental result of the process under consideration can give comprehensive information about the physics beyond the standard model and the existing free parameters.Comment: 8 pages, 7 Figure

    Searching for a light Fermiophobic Higgs Boson at the Tevatron

    Get PDF
    We propose new production mechanisms for light fermiophobic Higgs bosons (hfh_f) with suppressed couplings to vector bosons (VV) at the Fermilab Tevatron. These mechanisms (e.g. qqâ€Č→H±hfqq'\to H^\pm h_f) are complementary to the conventional process qqâ€Č→Vhfqq'\to Vh_f, which suffers from a strong suppression of 1/tan⁥2ÎČ1/\tan^2\beta in realistic models with a hfh_f. The new mechanisms extend the coverage at the Tevatron Run II to the larger tan⁥ÎČ\tan\beta region, and offer the possibility of observing new event topologies with up to 4 photons.Comment: 15 pages, including 5 eps-figure

    MSSM Higgs-Boson Production at Hadron Colliders with Explicit CP Violation

    Get PDF
    Gluon fusion is the main production mechanism for Higgs bosons with masses up to several hundred GeV in pppp collisions at the CERN Large Hadron Collider. We investigate the effects of the CP-violating phases on the fusion process including both the sfermion-loop contributions and the one-loop induced CP-violating scalar-pseudoscalar mixing in the minimal supersymmetric standard model. With a universal trilinear parameter assumed, every physical observable involves only the sum of the phases of the universal trilinear parameter AA and the higgsino mass parameter Ό\mu. The phase affects the lightest Higgs-boson production rate significantly through the neutral Higgs-boson mixing and, for the masses around the lightest stop-pair threshold, it also changes the production rate of the heavy Higgs bosons significantly through both the stop and sbottom loops and the neutral Higgs-boson mixing.Comment: 28 pages, 8 figures. Some references and comments added. Typos corrected. To appear in Phys. Rev.

    Inflation, cold dark matter, and the central density problem

    Full text link
    A problem with high central densities in dark halos has arisen in the context of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is often justified by appealing to the inflation scenario, inflationary models with mild deviations from scale-invariance are not uncommon and models with significant running of the spectral index are plausible. Even mild deviations from scale-invariance can be important because halo collapse times and densities depend on the relative amount of small-scale power. We choose several popular models of inflation and work out the ramifications for galaxy central densities. For each model, we calculate its COBE-normalized power spectrum and deduce the implied halo densities using a semi-analytic method calibrated against N-body simulations. We compare our predictions to a sample of dark matter-dominated galaxies using a non-parametric measure of the density. While standard n=1, LCDM halos are overdense by a factor of 6, several of our example inflation+CDM models predict halo densities well within the range preferred by observations. We also show how the presence of massive (0.5 eV) neutrinos may help to alleviate the central density problem even with n=1. We conclude that galaxy central densities may not be as problematic for the CDM paradigm as is sometimes assumed: rather than telling us something about the nature of the dark matter, galaxy rotation curves may be telling us something about inflation and/or neutrinos. An important test of this idea will be an eventual consensus on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our successful models have values of sigma_8 approximately 0.75, which is within the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1) are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's Comments, error in Eq. (18) corrected, references updated and corrected, conclusions unchanged. Version accepted for publication in Phys. Rev. D, scheduled for 15 August 200

    Collider signals from slow decays in supersymmetric models with an intermediate-scale solution to the mu problem

    Get PDF
    The problem of the origin of the mu parameter in the Minimal Supersymmetric Standard Model can be solved by introducing singlet supermultiplets with non-renormalizable couplings to the ordinary Higgs supermultiplets. The Peccei-Quinn symmetry is broken at a scale which is the geometric mean between the weak scale and the Planck scale, yielding a mu term of the right order of magnitude and an invisible axion. These models also predict one or more singlet fermions which have electroweak-scale masses and suppressed couplings to MSSM states. I consider the case that such a singlet fermion, containing the axino as an admixture, is the lightest supersymmetric particle. I work out the relevant couplings in several of the simplest models of this type, and compute the partial decay widths of the next-to-lightest supersymmetric particle involving leptons or jets. Although these decays will have an average proper decay length which is most likely much larger than a typical collider detector, they can occasionally occur within the detector, providing a striking signal. With a large sample of supersymmetric events, there will be an opportunity to observe these decays, and so gain direct information about physics at very high energy scales.Comment: 24 pages, LaTeX, 4 figure

    Can lepton flavor violating interactions explain the atmospheric neutrino problem?

    Get PDF
    We investigate whether flavor changing neutrino interactions (FCNIs) can be sufficiently large to provide a viable solution to the atmospheric neutrino problem. Effective operators induced by heavy boson exchange that allow for flavor changing neutrino scattering off quarks or electrons are related by an SU(2)LSU(2)_L rotation to operators that induce anomalous tau decays. Since SU(2)LSU(2)_L violation is small for New Physics at or above the weak scale, one can use the upper bounds on lepton flavor violating tau decays or on lepton universality violation to put severe, model-independent bounds on the relevant non-standard neutrino interactions. Also ZZ-induced flavor changing neutral currents, due to heavy singlet neutrinos, are too small to be relevant for the atmospheric neutrino anomaly. We conclude that the FCNI solution to the atmospheric neutrino problem is ruled out.Comment: 16 pages, no figures, Late
    • 

    corecore