5,008 research outputs found
Response inhibition is linked to emotional devaluation: behavioural and electrophysiological evidence
To study links between the inhibition of motor responses and emotional evaluation, we combined electrophysiological measures of prefrontal response inhibition with behavioural measures of affective evaluation. Participants first performed a Go-Nogo task in response to Asian and Caucasian faces (with race determining their Go or Nogo status), followed by a trustworthiness rating for each face. Faces previously seen as Nogo stimuli were rated as less trustworthy than previous Go stimuli. To study links between the efficiency of response inhibition in the Go-Nogo task and subsequent emotional evaluations, the Nogo N2 component was quantified separately for faces that were later judged to be high versus low in trustworthiness. Nogo N2 amplitudes were larger in response to low-rated as compared to high-rated faces, demonstrating that trial-by-trial variations in the efficiency of response inhibition triggered by Nogo faces, as measured by the Nogo N2 component, co-vary with their subsequent affective evaluation. These results suggest close links between inhibitory processes in top-down motor control and emotional responses
A model for gelation with explicit solvent effects: Structure and dynamics
We study a two-component model for gelation consisting of -functional
monomers (the gel) and inert particles (the solvent). After equilibration as a
simple liquid, the gel particles are gradually crosslinked to each other until
the desired number of crosslinks has been attained. At a critical crosslink
density the largest gel cluster percolates and an amorphous solid forms. This
percolation process is different from ordinary lattice or continuum percolation
of a single species in the sense that the critical exponents are new. As the
crosslink density approaches its critical value , the shear viscosity
diverges: with a nonuniversal
concentration-dependent exponent.Comment: 6 pages, 9 figure
Pulsed laser deposition of KNbO<sub>3</sub> thin films
The laser ablation of stationary KNbO3 single crystal targets induces a Nb enrichment of the target surface. In rotated targets this effect is observed only in those areas irradiated with low laser fluence. The composition of the plasma formed close to the target surface is congruent with the target composition; however, at further distances K-deficient films are formed due to the preferential backscattering of K in the plasma. This loss may be compensated for by using K-rich ceramic targets. Best results so far have been obtained with [K]/[Nb] = 2.85 target composition, and crystalline KNbO3 films are formed when heating the substrates to 650 °C. Films formed on (100)MgO single crystals are usually single phase and oriented with the (110) film plane parallel to the (100) substrate surface. (100)NbO may coexist with KNbO3 on (100)MgO. At substrate temperatures higher than 650 °C, niobium diffuses into MgO forming Mg4Nb2O9 and NbO, leading to K evaporation from the film. Films formed on (001) alpha-Al2O3 (sapphire) show the coexistence of (111), (110), and (001) orientations of KNbO3, and the presence of NbO2 is also observed. KNbO3 films deposited on (001)LiNbO3 crystallize with the (111) plane of the film parallel to the substrate surface. For the latter two substrates the Nb diffusion into the substrate is lower than in MgO and consequently the K concentration retained in the film is comparatively larger
Revisiting the calculations of inflationary perturbations
We present a new approximation scheme that allows us to increase the accuracy
of analytical predictions of the power spectra of inflationary perturbations
for two specific classes of inflationary models. Among these models are chaotic
inflation with a monomial potential, power-law inflation and natural inflation
(inflation at a maximum). After reviewing the established first order results
we calculate the amplitudes and spectral indices for these classes of models at
higher orders in the slow-roll parameters for scalar and tensorial
perturbations.Comment: Extended version of the talk to be published in the proceedings of
the Mexican Meeting on Exact Solutions and Scalar Fields in Gravity. Mexico,
1-6 October, 200
Grafting and Poisson structure in (2+1)-gravity with vanishing cosmological constant
We relate the geometrical construction of (2+1)-spacetimes via grafting to
phase space and Poisson structure in the Chern-Simons formulation of
(2+1)-dimensional gravity with vanishing cosmological constant on manifolds of
topology , where is an orientable two-surface of genus
. We show how grafting along simple closed geodesics \lambda is
implemented in the Chern-Simons formalism and derive explicit expressions for
its action on the holonomies of general closed curves on S_g. We prove that
this action is generated via the Poisson bracket by a gauge invariant
observable associated to the holonomy of . We deduce a symmetry
relation between the Poisson brackets of observables associated to the Lorentz
and translational components of the holonomies of general closed curves on S_g
and discuss its physical interpretation. Finally, we relate the action of
grafting on the phase space to the action of Dehn twists and show that grafting
can be viewed as a Dehn twist with a formal parameter satisfying
.Comment: 43 pages, 10 .eps figures; minor modifications: 2 figures added,
explanations added, typos correcte
Geometrical (2+1)-gravity and the Chern-Simons formulation: Grafting, Dehn twists, Wilson loop observables and the cosmological constant
We relate the geometrical and the Chern-Simons description of
(2+1)-dimensional gravity for spacetimes of topology , where
is an oriented two-surface of genus , for Lorentzian signature and general
cosmological constant and the Euclidean case with negative cosmological
constant. We show how the variables parametrising the phase space in the
Chern-Simons formalism are obtained from the geometrical description and how
the geometrical construction of (2+1)-spacetimes via grafting along closed,
simple geodesics gives rise to transformations on the phase space. We
demonstrate that these transformations are generated via the Poisson bracket by
one of the two canonical Wilson loop observables associated to the geodesic,
while the other acts as the Hamiltonian for infinitesimal Dehn twists. For
spacetimes with Lorentzian signature, we discuss the role of the cosmological
constant as a deformation parameter in the geometrical and the Chern-Simons
formulation of the theory. In particular, we show that the Lie algebras of the
Chern-Simons gauge groups can be identified with the (2+1)-dimensional Lorentz
algebra over a commutative ring, characterised by a formal parameter
whose square is minus the cosmological constant. In this
framework, the Wilson loop observables that generate grafting and Dehn twists
are obtained as the real and the -component of a Wilson loop
observable with values in the ring, and the grafting transformations can be
viewed as infinitesimal Dehn twists with the parameter .Comment: 50 pages, 6 eps figure
Ground state of a polydisperse electrorheological solid: Beyond the dipole approximation
The ground state of an electrorheological (ER) fluid has been studied based
on our recently proposed dipole-induced dipole (DID) model. We obtained an
analytic expression of the interaction between chains of particles which are of
the same or different dielectric constants. The effects of dielectric constants
on the structure formation in monodisperse and polydisperse electrorheological
fluids are studied in a wide range of dielectric contrasts between the
particles and the base fluid. Our results showed that the established
body-centered tetragonal ground state in monodisperse ER fluids may become
unstable due to a polydispersity in the particle dielectric constants. While
our results agree with that of the fully multipole theory, the DID model is
much simpler, which offers a basis for computer simulations in polydisperse ER
fluids.Comment: Accepted for publications by Phys. Rev.
Sensitivity for reverse-phi motion
AbstractLow-level contrast information in the primary visual pathway is represented in two different channels. ON-center cells signal positive contrasts and OFF-center cells signal negative contrasts. In this study we address the question whether initial motion analysis is performed separately in these two channels, or also through combination of signals from ON and OFF cells. We quantitatively compared motion coherence detection for regular and for reverse-phi motion stimuli. In reverse-phi motion the contrast of a pattern flips during displacements. Sensitivity is therefore based on correlating positive and negative contrasts, whereas for regular motion it is based on correlating similar contrasts. We compared tuning curves for step size and temporal interval for stimuli in which motion information was limited to a single combination of step size and interval. Tuning for step size and temporal interval was highly similar for the two types of motion. Moreover, minimal coherence thresholds for both types of motion matched quantitatively, irrespective of dot density. We also measured sensitivity for so-called no-phi motion stimuli, in which the contrast of displaced dots was set to zero. Sensitivity for no-phi motion was low for stimuli containing only black or only white dots. When both dot polarities were present in the stimulus, sensitivity was absent. Thus, motion information based on separate contrasts was effectively cancelled by a component based on different contrasts. Together these results show equal efficiency in correlating dots of opposite contrast and of similar contrast, which strongly suggests efficient detection of correlations across ON and OFF channels
The wave-vector power spectrum of the local tunnelling density of states: ripples in a d-wave sea
A weak scattering potential imposed on a layer of a cuprate
superconductor modulates the local density of states . In recently
reported experimental studies scanning-tunneling maps of have
been Fourier transformed to obtain a wave-vector power spectrum. Here, for the
case of a weak scattering potential, we discuss the structure of this power
spectrum and its relationship to the quasi-particle spectrum and the structure
factor of the scattering potential. Examples of quasi-particle interferences in
normal metals and - and d-wave superconductors are discussed.Comment: 22 pages, 21 figures; enlarged discussion of the d-wave response, to
be published in Physical Review
- …