213 research outputs found

    Magnetic fields and Sunyaev-Zel'dovich effect in galaxy clusters

    Full text link
    In this work we study the contribution of magnetic fields to the Sunyaev Zeldovich (SZ) effect in the intracluster medium. In particular we calculate the SZ angular power spectrum and the central temperature decrement. The effect of magnetic fields is included in the hydrostatic equilibrium equation by splitting the Lorentz force into two terms one being the force due to magnetic pressure which acts outwards and the other being magnetic tension which acts inwards. A perturbative approach is adopted to solve for the gas density profile for weak magnetic fields (< 4 micro G}). This leads to an enhancement of the gas density in the central regions for nearly radial magnetic field configurations. Previous works had considered the force due to magnetic pressure alone which is the case only for a special set of field configurations. However, we see that there exists possible sets of configurations of ICM magnetic fields where the force due to magnetic tension will dominate. Subsequently, this effect is extrapolated for typical field strengths (~ 10 micro G) and scaling arguments are used to estimate the angular power due to secondary anisotropies at cluster scales. In particular we find that it is possible to explain the excess power reported by CMB experiments like CBI, BIMA, ACBAR at l > 2000 with sigma_8 ~ 0.8 (WMAP 5 year data) for typical cluster magnetic fields. In addition we also see that the magnetic field effect on the SZ temperature decrement is more pronounced for low mass clusters ( ~ 2 keV). Future SZ detections of low mass clusters at few arc second resolution will be able to probe this effect more precisely. Thus, it will be instructive to explore the implications of this model in greater detail in future works.Comment: 20 pages, 8 figure

    Large Scale Pressure Fluctuations and Sunyaev-Zel'dovich Effect

    Get PDF
    The Sunyaev-Zel'dovich (SZ) effect associated with pressure fluctuations of the large scale structure gas distribution will be probed with current and upcoming wide-field small angular scale cosmic microwave background experiments. We study the generation of pressure fluctuations by baryons which are present in virialized dark matter halos and by baryons present in small overdensities. For collapsed halos, assuming the gas distribution is in hydrostatic equilibrium with matter density distribution, we predict the pressure power spectrum and bispectrum associated with the large scale structure gas distribution by extending the dark matter halo approach which describes the density field in terms of correlations between and within halos. The projected pressure power spectrum allows a determination of the resulting SZ power spectrum due to virialized structures. The unshocked photoionized baryons present in smaller overdensities trace the Jeans-scale smoothed dark matter distribution. They provide a lower limit to the SZ effect due to large scale structure in the absence of massive collapsed halos. We extend our calculations to discuss higher order statistics, such as bispectrum and skewness in SZ data. The SZ-weak lensing cross-correlation is suggested as a probe of correlations between dark matter and baryon density fields, while the probability distribution functions of peak statistics of SZ halos in wide field CMB data can be used as a probe of cosmology and non-Gaussian evolution of large scale structure pressure fluctuations.Comment: 16 pages, 9 figures; Revised with expanded discussions. Phys. Rev. D. (in press

    Redshifting Rings of Power

    Full text link
    The cosmic microwave background (CMB) has provided a precise template for features in the linear power spectrum: the matter-radiation turnover, sound horizon drop, and acoustic oscillations. In a two dimensional power spectrum in redshift and angular space, the features appear as distorted rings, and yield simultaneous, purely geometric, measures of the Hubble parameter H(z) and angular diameter distance D_A(z) via an absolute version of the Alcock-Paczynski test. Employing a simple Fisher matrix tool, we explore how future surveys can exploit these rings of power for dark energy studies. High-z CMB determinations of H and D_A are best complemented at moderate to low redshift (z < 0.5) with a population of objects that are at least as abundant as clusters of galaxies. We find that a sample similar to that of the ongoing SDSS Luminous Red Galaxy (LRG) survey can achieve statistical errors at the ~5% level for D_A(z) and H(z) in several redshift bins. This, in turn, implies errors of sigma(w)=0.03-0.05 for a constant dark energy equation of state in a flat universe. Deep galaxy cluster surveys such as the planned South Pole Telescope (SPT) survey, can extend this test out to z~1 or as far as redshift followup is available. We find that the expected constraints are at the sigma(w)=0.04-0.08 level, comparable to galaxies and complementary in redshift coverage.Comment: 8 pages, 5 figures submitted to PR

    Probing Primordial Non-Gaussianity with Large-Scale Structure

    Full text link
    We consider primordial non-Gaussianity due to quadratic corrections in the gravitational potential parametrized by a non-linear coupling parameter fnl. We study constraints on fnl from measurements of the galaxy bispectrum in redshift surveys. Using estimates for idealized survey geometries of the 2dF and SDSS surveys and realistic ones from SDSS mock catalogs, we show that it is possible to probe |fnl|~100, after marginalization over bias parameters. We apply our methods to the galaxy bispectrum measured from the PSCz survey, and obtain a 2sigma-constraint |fnl|< 1800. We estimate that an all sky redshift survey up to z~1 can probe |fnl|~1. We also consider the use of cluster abundance to constrain fnl and find that in order to be sensitive to |fnl|~100, cluster masses need to be determined with an accuracy of a few percent, assuming perfect knowledge of the mass function and cosmological parameters.Comment: 15 pages, 7 figure

    Constraining the dark energy with galaxy clusters X-ray data

    Full text link
    The equation of state characterizing the dark energy component is constrained by combining Chandra observations of the X-ray luminosity of galaxy clusters with independent measurements of the baryonic matter density and the latest measurements of the Hubble parameter as given by the HST key project. By assuming a spatially flat scenario driven by a "quintessence" component with an equation of state px=ωρxp_x = \omega \rho_x we place the following limits on the cosmological parameters ω\omega and Ωm\Omega_{\rm{m}}: (i) 1ω0.55-1 \leq \omega \leq -0.55 and Ωm=0.320.014+0.027\Omega_{\rm m} = 0.32^{+0.027}_{-0.014} (1σ\sigma) if the equation of state of the dark energy is restricted to the interval 1ω<0-1 \leq \omega < 0 (\emph{usual} quintessence) and (ii) ω=1.290.792+0.686\omega = -1.29^{+0.686}_{-0.792} and Ωm=0.310.034+0.037\Omega_{\rm{m}} = 0.31^{+0.037}_{-0.034} (1σ1\sigma) if ω\omega violates the null energy condition and assume values <1< -1 (\emph{extended} quintessence or ``phantom'' energy). These results are in good agreement with independent studies based on supernovae observations, large-scale structure and the anisotropies of the cosmic background radiation.Comment: 6 pages, 4 figures, LaTe

    DT/T beyond linear theory

    Full text link
    The major contribution to the anisotropy of the temperature of the Cosmic Microwave Background (CMB) radiation is believed to come from the interaction of linear density perturbations with the radiation previous to the decoupling time. Assuming a standard thermal history for the gas after recombination, only the gravitational field produced by the linear density perturbations present on a Ω1\Omega\neq 1 universe can generate anisotropies at low z (these anisotropies would manifest on large angular scales). However, secondary anisotropies are inevitably produced during the nonlinear evolution of matter at late times even in a universe with a standard thermal history. Two effects associated to this nonlinear phase can give rise to new anisotropies: the time-varying gravitational potential of nonlinear structures (Rees-Sciama RS effect) and the inverse Compton scattering of the microwave photons with hot electrons in clusters of galaxies (Sunyaev-Zeldovich SZ effect). These two effects can produce distinct imprints on the CMB temperature anisotropy. We discuss the amplitude of the anisotropies expected and the relevant angular scales in different cosmological scenarios. Future sensitive experiments will be able to probe the CMB anisotropies beyong the first order primary contribution.Comment: plain tex, 16 pages, 3 figures. Proceedings of the Laredo Advance School on Astrophysics "The universe at high-z, large-scale structure and the cosmic microwave background". To be publised by Springer-Verla

    Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    Get PDF
    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds

    Status of CMB Polarization Measurements from DASI and Other Experiments

    Full text link
    We review the current status and future plans for polarization measurements of the cosmic microwave background radiation, as well as the cosmology these measurements will address. After a long period of increasingly sensitive upper limits, the DASI experiment has detected the E-mode polarization and both the DASI and WMAP experiments have detected the TE correlation. These detections provide confirmation of the standard model of adiabatic primordial density fluctuations consistent with inflationary models. The WMAP TE correlation on large angular scales provides direct evidence of significant reionization at higher redshifts than had previously been supposed. These detections mark the beginning of a new era in CMB measurements and the rich cosmology that can be gleaned from them.Comment: 22 pages, 9 figures; To be published in the proceedings of "The Cosmic Microwave Background and its Polarization", New Astronomy Reviews, (eds. S. Hanany and K.A. Olive

    Local Scale-Dependent Non-Gaussian Curvature Perturbations at Cubic Order

    Full text link
    We calculate non-Gaussianities in the bispectrum and trispectrum arising from the cubic term in the local expansion of the scalar curvature perturbation. We compute to three-loop order and for general momenta. A procedure for evaluating the leading behavior of the resulting loop-integrals is developed and discussed. Finally, we survey unique non-linear signals which could arise from the cubic term in the squeezed limit. In particular, it is shown that loop corrections can cause fNLsq.f_{NL}^{sq.} to change sign as the momentum scale is varied. There also exists a momentum limit where τNL<0\tau_{NL} <0 can be realized.Comment: Published in JCA

    New constraints on H_0 and Omega_M from SZE/X-RAY data and Baryon Acoustic Oscillations

    Full text link
    The Hubble constant, H0H_0, sets the scale of the size and age of the Universe and its determination from independent methods is still worthwhile to be investigated. In this article, by using the Sunyaev-Zel`dovich effect and X-ray surface brightness data from 38 galaxy clusters observed by Bonamente {\it{et al.}} (2006), we obtain a new estimate of H0H_0 in the context of a flat Λ\LambdaCDM model. There is a degeneracy on the mass density parameter (Ωm\Omega_{m}) which is broken by applying a joint analysis involving the baryon acoustic oscillations (BAO) as given by Sloan Digital Sky Survey (SDSS). This happens because the BAO signature does not depend on H0H_0. Our basic finding is that a joint analysis involving these tests yield H0=0.7650.033+0.035H_0= 0.765^{+0.035}_{-0.033} km s1^{-1} Mpc1^{-1} and Ωm=0.270.02+0.03\Omega_{m}=0.27^{+0.03}_{-0.02}. Since the hypothesis of spherical geometry assumed by Bonamente {\it {et al.}} is questionable, we have also compared the above results to a recent work where a sample of triaxial galaxy clusters has been considered.Comment: 8 pages, 4 figures, 1 table, accepted version in the general relativity and gravitatio
    corecore