683 research outputs found

    On the Status of Highly Entropic Objects

    Full text link
    It has been proposed that the entropy of any object must satisfy fundamental (holographic or Bekenstein) bounds set by the object's size and perhaps its energy. However, most discussions of these bounds have ignored the possibility that objects violating the putative bounds could themselves become important components of Hawking radiation. We show that this possibility cannot a priori be neglected in existing derivations of the bounds. Thus this effect could potentially invalidate these derivations; but it might also lead to observational evidence for the bounds themselves.Comment: 6 pages, RevTex, a few editorial change

    Duality of Quasilocal Gravitational Energy and Charges with Non-orthogonal Boundaries

    Get PDF
    We study the duality of quasilocal energy and charges with non-orthogonal boundaries in the (2+1)-dimensional low-energy string theory. Quasilocal quantities shown in the previous work and some new variables arisen from considering the non-orthogonal boundaries as well are presented, and the boost relations between those quantities are discussed. Moreover, we show that the dual properties of quasilocal variables such as quasilocal energy density, momentum densities, surface stress densities, dilaton pressure densities, and Neuve-Schwarz(NS) charge density, are still valid in the moving observer's frame.Comment: 19pages, 1figure, RevTe

    A Note on Thermodynamics and Holography of Moving Giant Gravitons

    Get PDF
    In our previous work (Phys. Rev. D63, 085010, hep-th/0011290), we showed that the brane universe on the giant graviton moving in the near-horizon background of the dilatonic D(6-p)-brane is described by the mirage cosmology. We study thermodynamic properties of the moving giant graviton by applying thermodynamics of cosmology and the recently proposed holographic principles of cosmology. We find that the Fischler-Susskind holographic bound is satisfied by the closed brane universe on the moving giant graviton with p>3. The Bekenstein and the Hubble entropy bounds and the recently proposed Verlinde's holographic principle applied to the brane universe on the giant graviton are also studied.Comment: 13 pages, LaTeX, revised version to appear in Phys. Rev.

    Effective superpotential for U(N) with antisymmetric matter

    Full text link
    We consider an N=1 U(N) gauge theory with matter in the antisymmetric representation and its conjugate, with a tree level superpotential containing at least quartic interactions for these fields. We obtain the effective glueball superpotential in the classically unbroken case, and show that it has a non-trivial N-dependence which does not factorize. We also recover additional contributions starting at order S^N from the dynamics of Sp(0) factors. This can also be understood by a precise map of this theory to an Sp(2N-2) gauge theory with antisymmetric matter.Comment: 22 pages. v2: comment (and a reference) added at the end of section 2 on low rank cases; minor typos corrected. v3: 2 footnotes added with additional clarifications; version to appear in journa

    Chiral field theories from conifolds

    Full text link
    We discuss the geometric engineering and large n transition for an N=1 U(n) chiral gauge theory with one adjoint, one conjugate symmetric, one antisymmetric and eight fundamental chiral multiplets. Our IIB realization involves an orientifold of a non-compact Calabi-Yau A_2 fibration, together with D5-branes wrapping the exceptional curves of its resolution as well as the orientifold fixed locus. We give a detailed discussion of this background and of its relation to the Hanany-Witten realization of the same theory. In particular, we argue that the T-duality relating the two constructions maps the Z_2 orientifold of the Hanany-Witten realization into a Z_4 orientifold in type IIB. We also discuss the related engineering of theories with SO/Sp gauge groups and symmetric or antisymmetric matter.Comment: 34 pages, 8 figures, v2: References added, minor correction

    Brane cosmology with an anisotropic bulk

    Full text link
    In the context of brane cosmology, a scenario where our universe is a 3+1-dimensional surface (the ``brane'') embedded in a five-dimensional spacetime (the ``bulk''), we study geometries for which the brane is anisotropic - more specifically Bianchi I - though still homogeneous. We first obtain explicit vacuum bulk solutions with anisotropic three-dimensional spatial slices. The bulk is assumed to be empty but endowed with a negative cosmological constant. We then embed Z_2-symmetric branes in the anisotropic spacetimes and discuss the constraints on the brane energy-momentum tensor due to the five-dimensional anisotropic geometry. We show that if the bulk is static, an anisotropic brane cannot support a perfect fluid. However, we find that for some of our bulk solutions it is possible to embed a brane with a perfect fluid though its energy density and pressure are completely determined by the bulk geometry.Comment: 20 pages, 1 figur

    Holographic Coulomb branch vevs

    Full text link
    We compute holographically the vevs of all chiral primary operators for supergravity solutions corresponding to the Coulomb branch of N=4 SYM and find exact agreement with the corresponding field theory computation. Using the dictionary between 10d geometries and field theory developed to extract these vevs, we propose a gravity dual of a half supersymmetric deformation of N=4 SYM by certain irrelevant operators.Comment: 16 pages, v2 corrections in appendi

    Finite gravitational action for higher derivative and stringy gravities

    Get PDF
    We generalize the local surface counterterm prescription suggested in Einstein gravity for higher derivative (HD) and Weyl gravities. Explicitly, the surface counterterm is found for three- and five-dimensional HD gravities. As a result, the gravitational action for asymptotically AdS spaces is finite and gravitational energy-momentum tensor is well-defined. The holographic trace anomaly for d2 and d4 boundary (gauge) QFT dual to above HD gravity is calculated from gravitational energy-momentum tensor. The calculation of AdS black hole mass in HD gravity is presented within above prescrition. The comparison with the standard prescription (using reference spacetime) is done.Comment: LaTeX file, 21 page

    Toward a Quantization of Null Dust Collapse

    Get PDF
    Spherically symmetric, null dust clouds, like their time-like counterparts, may collapse classically into black holes or naked singularities depending on their initial conditions. We consider the Hamiltonian dynamics of the collapse of an arbitrary distribution of null dust, expressed in terms of the physical radius, RR, the null coordinates, VV for a collapsing cloud or UU for an expanding cloud, the mass function, mm, of the null matter, and their conjugate momenta. This description is obtained from the ADM description by a Kucha\v{r}-type canonical transformation. The constraints are linear in the canonical momenta and Dirac's constraint quantization program is implemented. Explicit solutions the constraints are obtained for both expanding and contracting null dust clouds with arbitrary mass functions.Comment: 10 pages, 2 figures (eps), RevTeX4. The last two sections have been revised and corrected. To appear in Phys. Rev.

    Partition functions and elliptic genera from supergravity

    Full text link
    We develop the spacetime aspects of the computation of partition functions for string/M-theory on AdS(3) xM. Subleading corrections to the semi-classical result are included systematically, laying the groundwork for comparison with CFT partition functions via the AdS(3)/CFT(2) correspondence. This leads to a better understanding of the "Farey tail" expansion of Dijkgraaf et. al. from the point of view of bulk physics. Besides clarifying various issues, we also extend the analysis to the N=2 setting with higher derivative effects included.Comment: 34 page
    • …
    corecore