74 research outputs found

    Dynamic moment of inertia of the 192Hg superdeformed band at high rotational frequencies

    Get PDF
    The superdeformed band in 192Hg has been extended to higher transition energies from a new analysis of a large set of double and triple coincidence data. Contrary to the results of cranked shell model calculations including monopole pairing, the dynamic moment of inertia I(2) is found to continue to increase with rotational frequency

    High-spin study of rotational structures in 72Br

    Get PDF
    High-spin states in 3572Br37 were studied using the 40Ca(36Ar, 3pn) reaction. The existing level scheme has been significantly modified and extended. Evidence has been found for a spin reassignment of -1ℏh to the previously observed negative-parity band, which carries implications for the interpretation of a signature inversion in this structure. One signature of the previously assigned positive-parity band is interpreted as negative parity and has been extended to I π=(22-) and its signature partner has been observed up to Iπ = (19-) for the first time. The remaining positive-parity band has been extended to Iπ=(29+). A sequence of states observed to Iπ=(22+) may be the signature partner of this structure. Configurations have been assigned to each of these three structures through comparisons to cranked Nilsson-Strutinsky calculations

    Yrast and near-yrast excitations up to high spin in 10048Cd52

    Get PDF
    The gamma decay of excited states in the nucleus 100Cd, which is two proton holes and two neutrons away from doubly magic (N=Z=50) 100Sn, has been studied with the Gammasphere array following the 46Ti(58Ni,2p2n) reaction at 215 MeV. Residues were identified by detection of evaporated charged particles in the Microball CsI array, by neutron detection in a set of liquid scintillator detectors, and by a tag on the delayed gamma-ray decay of the known 8+ isomeric state. The level scheme has been extended up to 20ℏ in angular momentum and to nearly 10 MeV in excitation energy. The results are compared with shell-model calculations

    High-angular-momentum structures in 64Zn

    Get PDF
    High-angular-momentum states in 64Zn were populated in the 40Ca( 28Si,4p) reaction at a beam energy of 122 MeV. Evaporated, light, charged particles were identified by the Microball, while Îł rays were detected using the Gammasphere array. The main focus of this paper is on two strongly coupled, collective bands. The yrast band, which was previously known, has been linked to lower-lying states establishing the excitation energies and angular momenta of in-band states for the first time. The newly identified excited band decays to the yrast band but firm angular-momentum assignments could not be made. In order to interpret these structures cranked-Nilsson-Strutinsky calculations have been performed. The calculations have been extended to account for the distribution of nucleons within a configuration. The yrast collective band is interpreted as based on the π(f 7/2) -1(p 3/2f 5/2) 2(g 9/2) 1 Îœ(p 3/2f 5/2) 4(g 9/2) 2 configuration. There are several possible interpretations of the second band but it is difficult to distinguish between the different possibilities

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    High-spin states in 149^{149}Gd

    No full text
    There have been few studies to date on how French researchers are using electronic journals in their work. Under a national program for document digitization in higher education and research, a qualitative study was conducted recently at the Jussieu Campus in Paris, with 25 researchers and doctoral students and 9 documentalists. The main disciplines covered were Physics, Chemistry and Biology, with some representatives from Mathematics, Computer Science and Earth Sciences. A user typology was built up, and several of the findings agree substantially with those in the (mainly Anglo-Saxon) literature, which demonstrate the importance of factors such as the discipline concerned and the immediate working environment of researchers, including equipment, local practice, and the resources that are promoted or made available. Other more subjective factors also need to be taken into account
    • 

    corecore