19 research outputs found

    Acoustic Attenuation in High-TcT_c Superconductors

    Full text link
    We analyze the acoustic attenuation rate in high-TcT_c superconductors, and find that this method offers an additional way to examine the anisotropy of the superconducting order parameter in these materials. We argue that it should be possible to distinguish the electronic contribution to the acoustic attenuation, which has a strong temperature dependence near TcT_c, from the lattice contribution, which does not show a strong temperature dependence near TcT_c. We propose that this can be utilized to measure the anisotropy of the order parameter by measuring the attenuation rate near TcT_c in different directions.Comment: 9 pages, latex, 2 postscript figures, in press Physica C, (uuencoded file consisting of paper and 2 figures, please contact J.C. Swihart ([email protected]) for a printed copy

    Calculation of electronic properties of amorphous alloys

    Full text link
    We describe the application of the locally-self-consistent-multiple-scattering (LSMS)[1] method to amorphous alloys. The LSMS algorithm is optimized for the Intel XP/S-150, a multiple-instruction-multiple-data parallel computer with 1024 nodes and 2 compute processors per node. The electron density at each site is determined by solving the multiple scattering equation for atoms within a specified distance of the atom under consideration. Because this method is carried out in real space it is ideal for treating amorphous alloys. We have adapted the code to the calculation of the electronic properties of amorphous alloys. In these calculations we determine the potentials in the atomic sphere approximation self consistently at each site, unlike previous calculations[2] where we determined the potentials self consistently at an average site. With these self-consistent potentials, we then calculate electronic properties of various amorphous alloy systems. We present calculated total electronic densities of states for amorphous Ni80_{80}P20_{20} and Ni40_{40}Pd40_{40}P20_{20} with 300 atoms in a supercell.Comment: 10 pages, plain tex, 2 figures. Paper accepted for publication in Proceedings of LAM-9 and Journal of non-Crystalline Solids. Please request preprints from J.C. Swihart ([email protected]

    Electromagnetic waves in a Josephson junction in a thin film

    Full text link
    We consider a one-dimensional Josephson junction in a superconducting film with the thickness that is much less than the London penetration depth. We treat an electromagnetic wave propagating along this tunnel contact. We show that the electrodynamics of a Josephson junction in a thin film is nonlocal if the wave length is less than the Pearl penetration depth. We find the integro-differential equation determining the phase difference between the two superconductors forming the tunnel contact. We use this equation to calculate the dispersion relation for an electromagnetic wave propagating along the Josephson junction. We find that the frequency of this wave is proportional to the square root of the wave vector if the wave length is less than the Pearl penetration depth.Comment: 12 pages, a figure is included as a uuencodeded postscript file, ReVTe

    Zurek-Kibble domain structures: The Dynamics of Spontaneous Vortex formation in Annular Josephson Tunnel Junctions

    Get PDF
    Phase transitions executed in a finite time show a domain structure with defects, that has been argued by Zurek and Kibble to depend in a characteristic way on the quench rate. In this letter we present an experiment to measure the Zurek-Kibble scaling exponent sigma. Using symmetric and long Josephson Tunnel Junctions, for which the predicted index is sigma = 0.25, we find sigma = 0.27 +/- 0.05. Further, there is agreement with the ZK prediction for the overall normalisation.Comment: To be published in Phys. Rev. Lett

    Strong Electron-Phonon Coupling in Superconducting MgB2_2: A Specific Heat Study

    Full text link
    We report on measurements of the specific heat of the recently discovered superconductor MgB2_2 in the temperature range between 3 and 220 K. Based on a modified Debye-Einstein model, we have achieved a rather accurate account of the lattice contribution to the specific heat, which allows us to separate the electronic contribution from the total measured specific heat. From our result for the electronic specific heat, we estimate the electron-phonon coupling constant λ\lambda to be of the order of 2, significantly enhanced compared to common weak-coupling values ≤0.4\leq 0.4. Our data also indicate that the electronic specific heat in the superconducting state of MgB2_2 can be accounted for by a conventional, s-wave type BCS-model.Comment: 4 pages, 4 figure

    Josephson Coupling and Fiske Dynamics in Ferromagnetic Tunnel Junctions

    Full text link
    We report on the fabrication of Nb/AlO_x/Pd_{0.82}Ni_{0.18}/Nb superconductor/insulator/ferromagnetic metal/superconductor (SIFS) Josephson junctions with high critical current densities, large normal resistance times area products, high quality factors, and very good spatial uniformity. For these junctions a transition from 0- to \pi-coupling is observed for a thickness d_F ~ 6 nm of the ferromagnetic Pd_{0.82}Ni_{0.18} interlayer. The magnetic field dependence of the \pi-coupled junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd_{0.82}Ni_{0.18} has an out-of-plane anisotropy and large saturation magnetization, indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes provides information on the junction quality factor and the relevant damping mechanisms up to about 400 GHz. Whereas losses due to quasiparticle tunneling dominate at low frequencies, the damping is dominated by the finite surface resistance of the junction electrodes at high frequencies. High quality factors of up to 30 around 200 GHz have been achieved. Our analysis shows that the fabricated junctions are promising for applications in superconducting quantum circuits or quantum tunneling experiments.Comment: 15 pages, 9 figure
    corecore