50 research outputs found

    Weak capture of protons by protons

    Get PDF
    The cross section for the proton weak capture reaction 1H(p,e+Îœe)2H^1H(p,e^+\nu_e)^2H is calculated with wave functions obtained from a number of modern, realistic high-precision interactions. To minimize the uncertainty in the axial two-body current operator, its matrix element has been adjusted to reproduce the measured Gamow-Teller matrix element of tritium ÎČ\beta decay in model calculations using trinucleon wave functions from these interactions. A thorough analysis of the ambiguities that this procedure introduces in evaluating the two-body current contribution to the pp capture is given. Its inherent model dependence is in fact found to be very weak. The overlap integral Λ2(E=0)\Lambda^2(E=0) for the pp capture is predicted to be in the range 7.05--7.06, including the axial two-body current contribution, for all interactions considered.Comment: 17 pages RevTeX (twocolumn), 5 postscript figure

    KRAS G12C Inhibition with Sotorasib in Advanced Solid Tumors

    Get PDF
    Background: No therapies for targeting KRAS mutations in cancer have been approved. The KRAS p.G12C mutation occurs in 13% of non-small-cell lung cancers (NSCLCs) and in 1 to 3% of colorectal cancers and other cancers. Sotorasib is a small molecule that selectively and irreversibly targets KRASG12C. Methods: We conducted a phase 1 trial of sotorasib in patients with advanced solid tumors harboring the KRAS p.G12C mutation. Patients received sotorasib orally once daily. The primary end point was safety. Key secondary end points were pharmacokinetics and objective response, as assessed according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1. Results: A total of 129 patients (59 with NSCLC, 42 with colorectal cancer, and 28 with other tumors) were included in dose escalation and expansion cohorts. Patients had received a median of 3 (range, 0 to 11) previous lines of anticancer therapies for metastatic disease. No dose-limiting toxic effects or treatment-related deaths were observed. A total of 73 patients (56.6%) had treatment-related adverse events; 15 patients (11.6%) had grade 3 or 4 events. In the subgroup with NSCLC, 32.2% (19 patients) had a confirmed objective response (complete or partial response) and 88.1% (52 patients) had disease control (objective response or stable disease); the median progression-free survival was 6.3 months (range, 0.0+ to 14.9 [with + indicating that the value includes patient data that were censored at data cutoff]). In the subgroup with colorectal cancer, 7.1% (3 patients) had a confirmed response, and 73.8% (31 patients) had disease control; the median progression-free survival was 4.0 months (range, 0.0+ to 11.1+). Responses were also observed in patients with pancreatic, endometrial, and appendiceal cancers and melanoma. Conclusions: Sotorasib showed encouraging anticancer activity in patients with heavily pretreated advanced solid tumors harboring the KRAS p.G12C mutation. Grade 3 or 4 treatment-related toxic effects occurred in 11.6% of the patients. (Funded by Amgen and others; CodeBreaK100 ClinicalTrials.gov number, NCT03600883.)

    Action selection and refinement in subcortical loops through basal ganglia and cerebellum

    No full text
    Subcortical loops through the basal ganglia and the cerebellum form computationally powerful distributed processing modules (DPMs). This paper relates the computational features of a DPM's loop through the basal ganglia to experimental results for two kinds of natural action selection. First, functional imaging during a serial order recall task was used to study human brain activity during the selection of sequential actions from working memory. Second, microelectrode recordings from monkeys trained in a step-tracking task were used to study the natural selection of corrective submovements. Our DPM-based model assisted in the interpretation of puzzling data from both of these experiments. We come to posit that the many loops through the basal ganglia each regulate the embodiment of pattern formation in a given area of cerebral cortex. This operation serves to instantiate different kinds of action (or thought) mediated by different areas of cerebral cortex. We then use our findings to formulate a model of the aetiology of schizophrenia

    Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system

    No full text
    The prefrontal cortex (PFC) has long been thought to serve as an ‘executive’ that controls the selection of actions and cognitive functions more generally. However, the mechanistic basis of this executive function has not been clearly specified often amounting to a homunculus. This paper reviews recent attempts to deconstruct this homunculus by elucidating the precise computational and neural mechanisms underlying the executive functions of the PFC. The overall approach builds upon existing mechanistic models of the basal ganglia (BG) and frontal systems known to play a critical role in motor control and action selection, where the BG provide a ‘Go’ versus ‘NoGo’ modulation of frontal action representations. In our model, the BG modulate working memory representations in prefrontal areas to support more abstract executive functions. We have developed a computational model of this system that is capable of developing human-like performance on working memory and executive control tasks through trial-and-error learning. This learning is based on reinforcement learning mechanisms associated with the midbrain dopaminergic system and its activation via the BG and amygdala. Finally, we briefly describe various empirical tests of this framework
    corecore