44 research outputs found

    Endogenous cortisol levels are associated with an imbalanced striatal sensitivity to monetary versus non-monetary cues in pathological gamblers

    Get PDF
    Contains fulltext : 137917.pdf (publisher's version ) (Open Access)Pathological gambling is a behavioral addiction characterized by a chronic failure to resist the urge to gamble. It shares many similarities with drug addiction. Glucocorticoid hormones including cortisol are thought to play a key role in the vulnerability to addictive behaviors, by acting on the mesolimbic reward pathway. Based on our previous report of an imbalanced sensitivity to monetary versus non-monetary incentives in the ventral striatum of pathological gamblers (PGs), we investigated whether this imbalance was mediated by individual differences in endogenous cortisol levels. We used functional magnetic resonance imaging (fMRI) and examined the relationship between cortisol levels and the neural responses to monetary versus non-monetary cues, while PGs and healthy controls were engaged in an incentive delay task manipulating both monetary and erotic rewards. We found a positive correlation between cortisol levels and ventral striatal responses to monetary versus erotic cues in PGs, but not in healthy controls. This indicates that the ventral striatum is a key region where cortisol modulates incentive motivation for gambling versus non-gambling related stimuli in PGs. Our results extend the proposed role of glucocorticoid hormones in drug addiction to behavioral addiction, and help understand the impact of cortisol on reward incentive processing in PGs

    A common currency for the computation of motivational values in the human striatum

    Get PDF
    Contains fulltext : 154934.pdf (publisher's version ) (Open Access)Reward comparison in the brain is thought to be achieved through the use of a 'common currency', implying that reward value representations are computed on a unique scale in the same brain regions regardless of the reward type. Although such a mechanism has been identified in the ventro-medial prefrontal cortex and ventral striatum in the context of decision-making, it is less clear whether it similarly applies to non-choice situations. To answer this question, we scanned 38 participants with fMRI while they were presented with single cues predicting either monetary or erotic rewards, without the need to make a decision. The ventral striatum was the main brain structure to respond to both cues while showing increasing activity with increasing expected reward intensity. Most importantly, the relative response of the striatum to monetary vs erotic cues was correlated with the relative motivational value of these rewards as inferred from reaction times. Similar correlations were observed in a fronto-parietal network known to be involved in attentional focus and motor readiness. Together, our results suggest that striatal reward value signals not only obey to a common currency mechanism in the absence of choice but may also serve as an input to adjust motivated behaviour accordingly

    Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies

    Get PDF
    Contains fulltext : 117487pos.pdf (postprint version ) (Open Access)One fundamental question concerning brain reward mechanisms is to determine how reward-related activity is influenced by the nature of rewards. Here, we review the neuroimaging literature and explicitly assess to what extent the representations of primary and secondary rewards overlap in the human brain. To achieve this goal, we performed an activation likelihood estimation (ALE) meta-analysis of 87 studies (1452 subjects) comparing the brain responses to monetary, erotic and food reward outcomes. Those three rewards robustly engaged a common brain network including the ventromedial prefrontal cortex, ventral striatum, amygdala, anterior insula and mediodorsal thalamus, although with some variations in the intensity and location of peak activity. Money-specific responses were further observed in the most anterior portion of the orbitofrontal cortex, supporting the idea that abstract secondary rewards are represented in evolutionary more recent brain regions. In contrast, food and erotic (i.e. primary) rewards were more strongly represented in the anterior insula, while erotic stimuli elicited particularly robust responses in the amygdala. Together, these results indicate that the computation of experienced reward value does not only recruit a core "reward system" but also reward type-dependent brain structures

    Social brains and divides: the interplay between social dominance orientation and the neural sensitivity to hierarchical ranks

    Get PDF
    Contains fulltext : 201761.pdf (publisher's version ) (Open Access

    Dynamical Representation of Dominance Relationships in the Human Rostromedial Prefrontal Cortex

    No full text
    Item does not contain fulltextSummary Humans and other primates have evolved the ability to represent their status in the group’s social hierarchy, which is essential for avoiding harm and accessing resources. Yet it remains unclear how the human brain learns dominance status and adjusts behavior accordingly during dynamic social interactions. Here we address this issue with a combination of fMRI and transcranial direct current stimulation (tDCS). In a first fMRI experiment, participants learned an implicit dominance hierarchy while playing a competitive game against three opponents of different skills. Neural activity in the rostromedial PFC (rmPFC) dynamically tracked and updated the dominance status of the opponents, whereas the ventromedial PFC and ventral striatum reacted specifically to competitive victories and defeats. In a second experiment, we applied anodal tDCS over the rmPFC to enhance neural excitability while subjects performed a similar competitive task. The stimulation enhanced the relative weight of victories over defeats in learning social dominance relationships and exacerbated the influence of one’s own dominance over competitive strategies. Importantly, these tDCS effects were specific to trials in which subjects learned about dominance relationships, as they were not present for control choices associated with monetary incentives but no competitive feedback. Taken together, our findings elucidate the role of rmPFC computations in dominance learning and unravel a fundamental mechanism that governs the emergence and maintenance of social dominance relationships in humans.9 p

    Local Morphology Predicts Functional Organization of Experienced Value Signals in the Human Orbitofrontal Cortex

    Get PDF
    Experienced value representations within the human orbitofrontal cortex (OFC) are thought to be organized through an antero-posterior gradient corresponding to secondary versus primary rewards. Whether this gradient depends upon specific morphological features within this region, which displays considerable intersubject variability, remains unknown. To test the existence of such relationships, we performed a subject-by-subject analysis of fMRI data taking into account the local morphology of each individual. We tested 38 subjects engaged in a simple incentive delay task manipulating both monetary and visual erotic rewards, focusing on reward outcome (experienced value signal). The results showed reliable and dissociable primary (erotic) and secondary (monetary) experienced value signals at specific OFC sulci locations. More specifically, experienced value signal induced by monetary reward outcome was systematically located in the rostral portion of the medial orbital sulcus. Experienced value signal related to erotic reward outcome was located more posteriorly, that is, at the intersection between the caudal portion of the medial orbital sulcus and transverse orbital sulcus. Thus, the localizations of distinct experienced value signals can be predicted from the organization of the human orbitofrontal sulci. This study provides insights into the anatomo-functional parcellation of the anteroposterior OFC gradient observed for secondary versus primary rewards because there is a direct relationship between value signals at the time of reward outcome and unique OFC sulci locations
    corecore