118 research outputs found

    The Kolmogorov-Smirnov test for the CMB

    Full text link
    We investigate the statistics of the cosmic microwave background using the Kolmogorov-Smirnov test. We show that, when we correctly de-correlate the data, the partition function of the Kolmogorov stochasticity parameter is compatible with the Kolmogorov distribution and, contrary to previous claims, the CMB data are compatible with Gaussian fluctuations with the correlation function given by standard Lambda-CDM. We then use the Kolmogorov-Smirnov test to derive upper bounds on residual point source power in the CMB, and indicate the promise of this statistics for further datasets, especially Planck, to search for deviations from Gaussianity and for detecting point sources and Galactic foregrounds.Comment: Improved significance of the results (which remain unchanged) by using patches instead of ring segments in the analysis. Added sky maps of the Kolmogorov-parameter for original and de-correlated CMB ma

    (gamma,np) reactions in <sup>12</sup>C , <sup>6</sup>Li and <sup>3,4</sup>He

    Get PDF
    The emission of neutron-proton pairs is the most probable outcome of photon absorbtion in the energy region above the giant resonance at least up to the pion threshold, but little detailed information on the process has been obtained due to experimental difficulties. Two nucleon emission following photon absorbtion by a correlated pair is favoured compared to direct knockout of a single nucleon, which is suppressed by the large momentum mismatch between the ingoing photon and a single outgoing fast nucleon. Studies of the (gamma,np) process seek firstly to obtain a quantitative understanding of the photon interaction mechanism, and through this to open the door to investigations of nucleon correlations in nuclei [1], information about which is long sought but not readily obtainable

    Perturbations in cosmologies with a scalar field and a perfect fluid

    Get PDF
    We study the properties of cosmological density perturbations in a multi-component system consisting of a scalar field and a perfect fluid. We discuss the number of degrees of freedom completely describing the system, introduce a full set of dynamical gauge-invariant equations in terms of the curvature and entropy perturbations, and display an efficient formulation of these equations as a first-order system linked by a fairly sparse matrix. Our formalism includes spatial gradients, extending previous formulations restricted to the large-scale limit, and fully accounts for the evolution of an isocurvature mode intrinsic to the scalar field. We then address the issue of the adiabatic condition, in particular demonstrating its preservation on large scales. Finally, we apply our formalism to the quintessence scenario and clearly underline the importance of initial conditions when considering late-time perturbations. In particular, we show that entropy perturbations can still be present when the quintessence field energy density becomes non-negligible.Comment: RevTex4, 9 pages, 3 figures. Significant additions on the quintessence scenario (new appendix and additional numerical example). Conclusions unchanged, but more robus

    Progress in muscular dystrophy research with special emphasis on gene therapy

    Get PDF
    Duchenne muscular dystrophy (DMD) is an X-linked, progressive muscle-wasting disease caused by mutations in the DMD gene. Since the disease was described by physicians in the 19th century, information about the subject has been accumulated. One author (Sugita) was one of the coworkers who first reported that the serum creatine kinase (CK) level is elevated in progressive muscular dystrophy patients. Even 50 years after that first report, an elevated serum CK level is still the most useful marker in the diagnosis of DMD, a sensitive index of the state of skeletal muscle, and useful to evaluate therapeutic effects. In the latter half of this article, we describe recent progress in the therapy of DMD, with an emphasis on gene therapies, particularly exon skipping

    Representational predicaments for employees: Their impact on perceptions of supervisors\u27 individualized consideration and on employee job satisfaction

    Get PDF
    A representational predicament for a subordinate vis-à-vis his or her immediate superior involves perceptual incongruence with the superior about the subordinate\u27s work or work context, with unfavourable implications for the employee. An instrument to measure the incidence of two types of representational predicament, being neglected and negative slanting, was developed and then validated through an initial survey of 327 employees. A subsequent substantive survey with a fresh sample of 330 employees largely supported a conceptual model linking being neglected and negative slanting to perceptions of low individualized consideration by superiors and to low overall job satisfaction. The respondents in both surveys were all Hong Kong Chinese. Two case examples drawn from qualitative interviews illustrate and support the conceptual model. Based on the research findings, we recommend some practical exercises to use in training interventions with leaders and subordinates. © 2013 Copyright Taylor and Francis Group, LLC
    corecore