289 research outputs found

    MICROMEGAS chambers for hadronic calorimetry at a future linear collider

    Full text link
    Prototypes of MICROMEGAS chambers, using bulk technology and analog readout, with 1x1cm2 readout segmentation have been built and tested. Measurements in Ar/iC4H10 (95/5) and Ar/CO2 (80/20) are reported. The dependency of the prototypes gas gain versus pressure, gas temperature and amplification gap thickness variations has been measured with an 55Fe source and a method for temperature and pressure correction of data is presented. A stack of four chambers has been tested in 200GeV/c and 7GeV/c muon and pion beams respectively. Measurements of response uniformity, detection efficiency and hit multiplicity are reported. A bulk MICROMEGAS prototype with embedded digital readout electronics has been assembled and tested. The chamber layout and first results are presented

    Gluon shadowing in the Glauber-Gribov model

    Get PDF
    New data from HERA experiment on (diffractive) deep inelastic scattering has been used to parameterize nucleon and Pomeron structure functions. Within the Gribov theory, the parameterizations were employed to calculate gluon shadowing for various heavy ions and compared our results with predictions from other models. Calculations for d+Au collisions at forward rapidities at ultra-relativistic energies have been made and are compared to RHIC data on the nuclear modification factor. Results for gluon shadowing are also confronted with recent data on the nuclear modification factor at s=17.3\sqrt{s} = 17.3 GeV at various values of the Feynman variable xFx_F, and the energy dependence of the effect is discussed.Comment: To appear in the proceedings of the Workshop for young scientists on the physics of ultrarelativistic nucleus-nucleus collisions, Hot Quarks 2006. To be published in EPJ

    The longitudinal cross section of vector meson electroproduction

    Get PDF
    We analyze electroproduction of light vector mesons (V=rho, phi and omega) at small Bjorken-x in the handbag approach in which the process factorizes into general parton distributions and partonic subprocesses. The latter are calculated in the modified perturbative approach where the transverse momenta of the quark and antiquark forming the vector meson are retained and Sudakov suppressions are taken into account. Modeling the generalized parton distributions through double distributions and using simple Gaussian wavefunctions for the vector mesons, we compute the longitudinal cross sections at large photon virtualities. The results are in fair agreement with the findings of recent experiments performed at HERA and HERMES.Comment: 27 pages, 20 figures, using LATEX with graphic

    Suppression factors in diffractive photoproduction of dijets

    Full text link
    After new publications of H1 data for the diffractive photoproduction of dijets, which overlap with the earlier published H1 data and the recently published data of the ZEUS collaboration, have appeared, we have recalculated the cross sections for this process in next-to-leading order (NLO) of perturbative QCD to see whether they can be interpreted consistently. The results of these calculations are compared to the data of both collaborations. We find that the NLO cross sections disagree with the data, showing that factorization breaking occurs at that order. If direct and resolved contributions are both suppressed by the same amount, the global suppression factor depends on the transverse-energy cut. However, by suppressing only the resolved contribution, also reasonably good agreement with all the data is found with a suppression factor independent of the transverse-energy cut.Comment: 28 pages, 11 figures, 3 table

    Expanding running coupling effects in the hard Pomeron

    Get PDF
    We study QCD hard processes at scales of order k^2 > Lambda^2 in the limit in which the beta-function coefficient - b is taken to be small, but alphas(k) is kept fixed. The (nonperturbative) Pomeron is exponentially suppressed in this limit, making it possible to define purely perturbative high-energy Green's functions. The hard Pomeron exponent acquires diffusion and running coupling corrections which can be expanded in the b parameter and turn out to be dependent on the effective coupling b alphas^2 Y. We provide a general setup for this b-expansion and we calculate the first few terms both analytically and numerically.Comment: 36 pages, 15 figures, additional references adde

    Charm quark and D^* cross sections in deeply inelastic scattering at DESY HERA

    Get PDF
    A next-to-leading order Monte Carlo program for the calculation of heavy quark cross sections in deeply inelastic scattering is described. Concentrating on charm quark and D^*(2010) production at HERA, several distributions are presented and their variation with respect to charm quark mass, parton distribution set, and renormalization-factorization scale is studied.Comment: 15 pages including 8 figures. Uses Latex, Revtex, and psfig. References added - others updated. Several sentences/words added for clarity. Results/conclusions unchanged. To appear in Phys. Rev.

    The Pomeron In Exclusive Vector Meson Production

    Get PDF
    An earlier developed model for vector meson photoproduction, based on a dipole Pomeron exchange, is extended to electroproduction. Universality of the non linear Pomeron trajectory is tested by fitting the model to ZEUS and H1 data as well as to CDF data on pˉp\bar pp elastic scattering.Comment: 12 pages, 13 figure

    Exploring skewed parton distributions with two body models on the light front II: covariant Bethe-Salpeter approach

    Get PDF
    We explore skewed parton distributions for two-body, light-front wave functions. In order to access all kinematical regimes, we adopt a covariant Bethe-Salpeter approach, which makes use of the underlying equation of motion (here the Weinberg equation) and its Green's function. Such an approach allows for the consistent treatment of the non-wave function vertex (but rules out the case of phenomenological wave functions derived from ad hoc potentials). Our investigation centers around checking internal consistency by demonstrating time-reversal invariance and continuity between valence and non-valence regimes. We derive our expressions by assuming the effective qq potential is independent of the mass squared, and verify the sum rule in a non-relativistic approximation in which the potential is energy independent. We consider bare-coupling as well as interacting skewed parton distributions and develop approximations for the Green's function which preserve the general properties of these distributions. Lastly we apply our approach to time-like form factors and find similar expressions for the related generalized distribution amplitudes.Comment: 25 pages, 12 figures, revised (minor changes but essential to consistency

    A next-to-leading order analysis of deeply virtual Compton scattering

    Get PDF
    We present a complete, next-to-leading-order (NLO), leading-twist QCD analysis of deeply virtual Compton scattering (DVCS) observables, in the MSˉ{\bar {MS}} scheme, and in the kinematic ranges of the H1, ZEUS and HERMES experiments. We use a modified form of Radyushkin's ansatz for the input model for the generalized parton distributions. We present results for leading order (LO) and NLO for representative observables and find that they compare favourably to the available data.Comment: 5 pages, 2 figures, revtex, published version, we modify Radyushkin's ansatz for the GPDs to correct for finite hadronic mass effects, and, using the latest MRST PDFs, now agree with the H1 data (modified figs). Typo in Eq.(3) correcte

    Color Transparency versus Quantum Coherence in Electroproduction of Vector Mesons off Nuclei

    Full text link
    So far no theoretical tool for the comprehensive description of exclusive electroproduction of vector mesons off nuclei at medium energies has been developed. We suggest a light-cone QCD formalism which is valid at any energy and incorporates formation effects (color transparency), the coherence length and the gluon shadowing. At medium energies color transparency (CT) and the onset of coherence length (CL) effects are not easily separated. Indeed, although nuclear transparency measured by the HERMES experiment rises with Q^2, it agrees with predictions of the vector dominance model (VDM) without any CT effects. Our new results and observations are: (i) the good agreement with the VDM found earlier is accidental and related to the specific correlation between Q^2 and CL for HERMES kinematics; (ii) CT effects are much larger than have been estimated earlier within the two channel approximation. They are even stronger at low than at high energies and can be easily identified by HERMES or at JLab; (iii) gluon shadowing which is important at high energies is calculated and included; (iv) our parameter-free calculations explain well available data for variation of nuclear transparency with virtuality and energy of the photon; (v) predictions for electroproduction of \rho and \phi are provided for future measurements at HERMES and JLab.Comment: Latex 57 pages and 17 figure
    corecore