792 research outputs found

    Interactions of inert confiners with explosives

    Get PDF
    The deformation of an inert confiner by a steady detonation wave in an adjacent explosive is investigated for cases where the confiner is suciently strong (or the explosive suciently weak) such that the overall change in the sound speed of the inert is small. A coupling condition which relates the pressure to the deflection angle along the explosive-inert interface is determined. This includes its dependence on the thickness of the inert, for cases where the initial sound speed of the inert is less than or greater than the detonation speed in the explosive (supersonic and subsonic inert ows, respectively). The deformation of the inert is then solved by prescribing the pressure along the interface. In the supersonic case, the detonation drives a shock into the inert, subsequent to which the ow in the inert consists of alternating regions of compression and tension. In this case reverberations or `ringing' occurs along both the deflected interface and outer edge of the inert. For the subsonic case, the flow in the interior of the inert is smooth and shockless. The detonation in the explosive initially defl ects the smooth interface towards the explosive. For sufficiently thick inerts in such cases, it appears that the deflection of the confiner would either drive the detonation speed in the explosive up to the sound speed of the inert or drive a precursor wave ahead of the detonation in the explosive. Transonic cases, where the inert sound speed is close to the detonation speed, are also considered. It is shown that the confinement affect of the inert on the detonation is enhanced as sonic conditions are approached from either side

    A spherical perfect lens

    Full text link
    It has been recently proved that a slab of negative refractive index material acts as a perfect lens in that it makes accessible the sub-wavelength image information contained in the evanescent modes of a source. Here we elaborate on perfect lens solutions to spherical shells of negative refractive material where magnification of the near-field images becomes possible. The negative refractive materials then need to be spatially dispersive with ϵ(r)1/r\epsilon(r) \sim 1/r and μ(r)1/r\mu(r)\sim 1/r. We concentrate on lens-like solutions for the extreme near-field limit. Then the conditions for the TM and TE polarized modes become independent of μ\mu and ϵ\epsilon respectively.Comment: Revtex4, 9 pages, 2 figures (eps

    Thermoelectric properties of co-doped (Bi0.98In0.02)2Te2.7Se0.3 / reduced graphene oxide composites prepared by solid-state reaction

    Get PDF
    The thermoelectric properties of co-doped (Bi0.98In0.02)2Te2.7Se0.3/reduced graphene oxide composites between 10 - 325 K are presented. X-ray diffraction confirms that the composites adopt a rhombohedral structure with space group R3¯m. Field emission scanning electron microscopy reveals an interface structure of reduced graphene oxide (rGO). N-type conducting behaviour is observed for all the samples, as ascertained by Hall effect and Seebeck coefficient measurements, with a carrier concentration of 1025/m3. The thermal conductivity and electrical resistivity of (Bi0.98In0.02)2Te2.7Se0.3/0.02 wt% reduced graphene oxide composite is found to decrease by 1.6 and 10 times respectively in comparison with that of (Bi0.98In0.02)2Te2.7Se0.3. The power factor is enhanced by 7 times for (Bi0.98In0.02)2Te2.7Se0.3/0.01 wt% rGO compared to that of (Bi0.98In0.02)2Te2.7Se0.3

    Cooling rate dependence of the antiferromagnetic domain structure of a single crystalline charge ordered manganite

    Full text link
    The low temperature phase of single crystals of Nd0.5_{0.5}Ca0.5_{0.5}MnO3_3 and Gd0.5_{0.5}Ca0.5_{0.5}MnO3_3 manganites is investigated by squid magnetometry. Nd0.5_{0.5}Ca0.5_{0.5}MnO3_3 undergoes a charge-ordering transition at TCOT_{CO}=245K, and a long range CE-type antiferromagnetic state is established at TNT_N=145K. The dc-magnetization shows a cooling rate dependence below TNT_N, associated with a weak spontaneous moment. The associated excess magnetization is related to uncompensated spins in the CE-type antiferromagnetic structure, and to the presence in this state of fully orbital ordered regions separated by orbital domain walls. The observed cooling rate dependence is interpreted to be a consequence of the rearrangement of the orbital domain state induced by the large structural changes occurring upon cooling.Comment: REVTeX4; 7 pages, 4 figures. Revised 2001/12/0

    Amplification of evanescent waves in a lossy left-handed material slab

    Full text link
    We carry out finite-difference time-domain (FDTD) simulations, with a specially-designed boundary condition, on pure evanescent waves interacting with a lossy left-handed material (LHM) slab. Our results provide the first full-wave numerical evidence for the amplification of evanescent waves inside a LHM slab of finite absorption. The amplification is due to the interactions between the evanescent waves and the coupled surface polaritons at the two surfaces of the LHM slab and the physical process can be described by a simple model.Comment: 4 pages, 2 figure

    Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin

    Get PDF
    The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan-Kerala Basin, coupledwith a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and o¡shore sediment loading in order to test competing conceptual models for the development of high-elevation passive margins. The Konkan-Kerala Basin contains an estimated 109,000 km<sup>3</sup>; of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore that flexure is an important component in the development of the Western Indian Margin.There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic

    Decomposition of Differences

    Full text link
    This paper examines methods of decomposing a difference in levels between groups for a dependent variable such as income. Applied to regression equations, this technique estimates the contribution to the difference from divergent characteristics and divergent rates of converting characteristics into the dependent variable. The consequences of an "interaction" component being present in the decomposition is examined. The paper, using data from the 1960 Census, shows how ignoring the interaction term can influence results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68707/2/10.1177_004912417500300306.pd

    Improved Copper Circularity as a Result of Increased Material Efficiency in the U.S. Housing Stock

    Get PDF
    Material efficiency (ME) can support rapid climate change mitigation and circular economy. Here, we comprehensively assess the circularity of ME strategies for copper use in the U.S. housing services (including residential buildings and major household appliances) by integrating use-phase material and energy demand. Although the ME strategies of more intensive floor space use and extended lifetime of appliances and buildings reduce the primary copper demand, employing these strategies increases the commonly neglected use-phase share of total copper requirements during the century from 23–28 to 22–42%. Use-phase copper requirements for home improvements have remained larger than the demand gap (copper demand minus scrap availability) for much of the century, limiting copper circularity in the U.S. housing services. Further, use-phase energy consumption can negate the benefits of ME strategies. For instance, the lifetime extension of lower-efficiency refrigerators increases the copper use and net environmental impact by increased electricity use despite reductions from less production. This suggests a need for more attention to the use phase when assessing circularity, especially for products that are material and energy intensive during use. To avoid burden shifting, policymakers should consider the entire life cycle of products supporting services when pursuing circular economy goals

    Observability and nonlinear filtering

    Full text link
    This paper develops a connection between the asymptotic stability of nonlinear filters and a notion of observability. We consider a general class of hidden Markov models in continuous time with compact signal state space, and call such a model observable if no two initial measures of the signal process give rise to the same law of the observation process. We demonstrate that observability implies stability of the filter, i.e., the filtered estimates become insensitive to the initial measure at large times. For the special case where the signal is a finite-state Markov process and the observations are of the white noise type, a complete (necessary and sufficient) characterization of filter stability is obtained in terms of a slightly weaker detectability condition. In addition to observability, the role of controllability in filter stability is explored. Finally, the results are partially extended to non-compact signal state spaces
    corecore